Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Pharmacol Res ; 203: 107156, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522762

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and morbidity and mortality rates continue to rise. Atherosclerosis constitutes the principal etiology of CVDs. Endothelial injury, inflammation, and dysfunction are the initiating factors of atherosclerosis. Recently, we reported that endothelial adenosine receptor 2 A (ADORA2A), a G protein-coupled receptor (GPCR), plays critical roles in neovascularization disease and cerebrovascular disease. However, the precise role of endothelial ADORA2A in atherosclerosis is still not fully understood. Here, we showed that ADORA2A expression was markedly increased in the aortic endothelium of humans with atherosclerosis or Apoe-/- mice fed a high-cholesterol diet. In vivo studies unraveled that endothelial-specific Adora2a deficiency alleviated endothelial-to-mesenchymal transition (EndMT) and prevented the formation and instability of atherosclerotic plaque in Apoe-/- mice. Moreover, pharmacologic inhibition of ADORA2A with KW6002 recapitulated the anti-atherogenic phenotypes observed in genetically Adora2a-deficient mice. In cultured human aortic endothelial cells (HAECs), siRNA knockdown of ADORA2A or KW6002 inhibition of ADORA2A decreased EndMT, whereas adenoviral overexpression of ADORA2A induced EndMT. Mechanistically, ADORA2A upregulated ALK5 expression via a cAMP/PKA/CREB axis, leading to TGFß-Smad2/3 signaling activation, thereby promoting EndMT. In conclusion, these findings, for the first time, demonstrate that blockade of ADORA2A attenuated atherosclerosis via inhibition of EndMT induced by the CREB1-ALK5 axis. This study discloses a new link between endothelial ADORA2A and EndMT and indicates that inhibiting endothelial ADORA2A could be an effective novel strategy for the prevention and treatment of atherosclerotic CVDs.


Asunto(s)
Aterosclerosis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Transición Epitelial-Mesenquimal , Ratones Endogámicos C57BL , Receptor de Adenosina A2A , Receptor Tipo I de Factor de Crecimiento Transformador beta , Animales , Humanos , Masculino , Ratones , Antagonistas del Receptor de Adenosina A2/farmacología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ratones Noqueados , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal
2.
Acta Pharmacol Sin ; 45(6): 1316-1320, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459255

RESUMEN

Within the context of residual cardiovascular risk in post-statin era, emerging evidence from epidemiologic and human genetic studies have demonstrated that triglyceride (TG)-rich lipoproteins and their remnants are causally related to cardiovascular risk. While, carriers of loss-of-function mutations of ApoC3 have low TG levels and are protected from cardiovascular disease (CVD). Of translational significance, siRNAs/antisense oligonucleotide (ASO) targeting ApoC3 is beneficial for patients with atherosclerotic CVD. Therefore, animal models of atherosclerosis with both hypercholesterolemia and hypertriglyceridemia are important for the discovery of novel therapeutic strategies targeting TG-lowering on top of traditional cholesterol-lowering. In this study, we constructed a novel mouse model of familial combined hyperlipidemia through inserting a human ApoC3 transgene (hApoC3-Tg) into C57BL/6 J mice and injecting a gain-of-function variant of adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-D377Y concurrently with high cholesterol diet (HCD) feeding for 16 weeks. In the last 10 weeks, hApoC3-Tg mice were orally treated with a combination of atorvastatin (10 mg·kg-1·d-1) and fenofibrate (100 mg·kg-1·d-1). HCD-treated hApoC3-Tg mice demonstrated elevated levels of serum TG, total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Oral administration of atorvastatin and fenofibrate significantly decreased the plaque sizes of en face aorta, aortic sinus and innominate artery accompanied by improved lipid profile and distribution. In summary, this novel mouse model is of considerable clinical relevance for evaluation of anti-atherosclerotic drugs by targeting both hypercholesterolemia and hypertriglyceridemia.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Hiperlipidemia Familiar Combinada , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Aterosclerosis/tratamiento farmacológico , Humanos , Ratones , Hiperlipidemia Familiar Combinada/tratamiento farmacológico , Hiperlipidemia Familiar Combinada/genética , Apolipoproteína C-III/genética , Masculino , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Hipolipemiantes/uso terapéutico , Hipolipemiantes/farmacología , Triglicéridos/sangre , Dieta Alta en Grasa , Atorvastatina/uso terapéutico , Atorvastatina/farmacología
3.
Acta Pharmacol Sin ; 45(8): 1604-1617, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38589689

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is closely associated with metabolic derangement. Sodium glucose cotransporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) exert anti-HFpEF effects, but the underlying mechanisms remain unclear. In this study, we explored the anti-HFpEF effects of empagliflozin and liraglutide and the underlying molecular mechanisms in a mouse model of HFpEF. This model was established by high-fat diet (HFD) feeding plus Nω-nitro-L-arginine methyl ester (L-NAME) treatment. The mice were treated with empagliflozin (20 mg·kg-1·d-1, i.g.) or liraglutide (0.3 mg·kg-1·d-1, i.p.) or their combination for 4 weeks. At the end of the experimental protocol, cardiac function was measured using ultrasound, then mice were euthanized and heart, liver, and kidney tissues were collected. Nuclei were isolated from frozen mouse ventricular tissue for single-nucleus RNA-sequencing (snRNA-seq). We showed that administration of empagliflozin or liraglutide alone or in combination significantly improved diastolic function, ameliorated cardiomyocyte hypertrophy and cardiac fibrosis, as well as exercise tolerance but no synergism was observed in the combination group. Furthermore, empagliflozin and/or liraglutide lowered body weight, improved glucose metabolism, lowered blood pressure, and improved liver and kidney function. After the withdrawal of empagliflozin or liraglutide for 1 week, these beneficial effects tended to diminish. The snRNA-seq analysis revealed a subcluster of myocytes, in which Erbb4 expression was down-regulated under HFpEF conditions, and restored by empagliflozin or liraglutide. Pseudo-time trajectory analysis and cell-to-cell communication studies confirmed that the Erbb4 pathway was a prominent pathway essential for both drug actions. In the HFpEF mouse model, both empagliflozin and liraglutide reversed Erbb4 down-regulation. In rat h9c2 cells, we showed that palmitic acid- or high glucose-induced changes in PKCα and/or ERK1/2 phosphorylation at least in part through Erbb4. Collectively, the single-cell atlas reveals the anti-HFpEF mechanism of empagliflozin and liraglutide, suggesting that Erbb4 pathway represents a new therapeutic target for HFpEF. Effects and mechanisms of action of empagliflozin and liraglutide in HFpEF mice. HFpEF was induced with a high-fat diet and L-NAME for 15 weeks, and treatment with empagliflozin and liraglutide improved the HFpEF phenotype. Single nucleus RNA sequencing (snRNA-seq) was used to reveal the underlying mechanism of action of empagliflozin and liraglutide.


Asunto(s)
Compuestos de Bencidrilo , Glucósidos , Insuficiencia Cardíaca , Liraglutida , Ratones Endogámicos C57BL , Transducción de Señal , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Glucósidos/farmacología , Glucósidos/uso terapéutico , Liraglutida/farmacología , Liraglutida/uso terapéutico , Transducción de Señal/efectos de los fármacos , Masculino , Ratones , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Dieta Alta en Grasa , Volumen Sistólico/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Modelos Animales de Enfermedad
4.
Acta Pharmacol Sin ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886550

RESUMEN

Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 µM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.

5.
Handb Exp Pharmacol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755351

RESUMEN

Atherosclerosis is a common cardiovascular disease closely associated with factors such as hyperlipidaemia and chronic inflammation. Among them, endothelial dysfunction serves as a major predisposing factor. Vascular endothelial dysfunction is manifested by impaired endothelium-dependent vasodilation, enhanced oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, endothelial senescence, and endothelial-mesenchymal transition (EndoMT). Flavonoids are known for their antioxidant activity, eliminating oxidative stress induced by reactive oxygen species (ROS), thereby preventing the oxidation of low-density lipoprotein (LDL) cholesterol, reducing platelet aggregation, alleviating ischemic damage, and improving vascular function. Flavonoids have also been shown to possess anti-inflammatory activity and to protect the cardiovascular system. This review focuses on the protective effects of these naturally-occuring bioactive flavonoids against the initiation and progression of atherosclerosis through their effects on endothelial cells including, but not limited to, their antioxidant, anti-inflammatory, anti-thrombotic, and lipid-lowering properties. However, more clinical evidences are still needed to determine the exact role and optimal dosage of these compounds in the treatment of atherosclerosis.

6.
Trends Mol Med ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38845325

RESUMEN

As an endogenous immunometabolite, itaconate has excellent anti-inflammatory effects. However, it remains unknown whether itaconate protects against atherosclerosis. Two recent studies, by Song et al. and Cyr et al., revealed the emerging role of the aconitate decarboxylase 1/itaconate pathway in atherosclerosis.

7.
Trends Endocrinol Metab ; 35(6): 453-455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431437

RESUMEN

Lipid droplets (LDs) are essential for cellular pathophysiology. In two recent reports, Kim et al. and Boutagy et al. show that accumulation of LDs in endothelial cells (ECs) elevates blood pressure and accelerates progression of atherosclerosis. These findings identify a novel mechanism of EC lipid metabolism which drives cardiometabolic diseases.


Asunto(s)
Aterosclerosis , Células Endoteliales , Hipertensión , Gotas Lipídicas , Humanos , Gotas Lipídicas/metabolismo , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Hipertensión/metabolismo , Animales , Metabolismo de los Lípidos/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-39122600

RESUMEN

Microplastics and nanoplastics (MNPs) are being recognized as new cardiovascular risk factors, impacting vascular cell functions and exacerbating atherosclerosis through diverse mechanisms. However, the varied concentrations of MNPs detected in major cardiovascular tissues highlight the urgent need for standardized research methodologies to better understand their impact and inform future health guidelines.

9.
Drug Discov Today ; 29(3): 103910, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301798

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) pose a significant threat to human health and cause a tremendous socioeconomic burden. Currently, the molecular mechanisms of NAFLD and NASH remain incompletely understood, and no effective pharmacotherapies have been approved. In the past five years, significant advances have been achieved in our understanding of the pathomechanisms and potential pharmacotherapies of NAFLD and NASH. Research advances include the investigation of the effects of the fibroblast growth factor 21 (FGF21) analog pegozafermin and the thyroid hormone receptor-ß (THRß) agonist resmetriom on hepatic fat content, NASH resolution and/or fibrosis regression. Future directions of NAFLD and NASH research (including combination therapy, organoids and humanized mouse models) are also discussed in this state-of-the-art review.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Fibrosis , Terapia Combinada , Modelos Animales de Enfermedad
10.
Br J Pharmacol ; 181(12): 1695-1719, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38528718

RESUMEN

Cardio-cerebrovascular diseases encompass pathological changes in the heart, brain and vascular system, which pose a great threat to health and well-being worldwide. Moreover, metabolic diseases contribute to and exacerbate the impact of vascular diseases. Inflammation is a complex process that protects against noxious stimuli but is also dysregulated in numerous so-called inflammatory diseases, one of which is atherosclerosis. Inflammation involves multiple organ systems and a complex cascade of molecular and cellular events. Numerous studies have shown that inflammation plays a vital role in cardio-cerebrovascular diseases and metabolic diseases. The absent in melanoma 2 (AIM2) inflammasome detects and is subsequently activated by double-stranded DNA in damaged cells and pathogens. With the assistance of the mature effector molecule caspase-1, the AIM2 inflammasome performs crucial biological functions that underpin its involvement in cardio-cerebrovascular diseases and related metabolic diseases: The production of interleukin-1 beta (IL-1ß), interleukin-18 (IL-18) and N-terminal pore-forming Gasdermin D fragment (GSDMD-N) mediates a series of inflammatory responses and programmed cell death (pyroptosis and PANoptosis). Currently, several agents have been reported to inhibit the activity of the AIM2 inflammasome and have the potential to be evaluated for use in clinical settings. In this review, we systemically elucidate the assembly, biological functions, regulation and mechanisms of the AIM2 inflammasome in cardio-cerebrovascular diseases and related metabolic diseases and outline the inhibitory agents of the AIM2 inflammasome as potential therapeutic drugs.


Asunto(s)
Proteínas de Unión al ADN , Inflamasomas , Enfermedades Metabólicas , Humanos , Inflamasomas/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/inmunología , Inflamación/metabolismo , Inflamación/tratamiento farmacológico
11.
J Pharm Pharmacol ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733634

RESUMEN

The incidence and mortality rate of atherosclerotic cardiovascular disease (ASCVD) is increasing yearly worldwide. Recently, a growing body of evidence has unveiled the anti-atherosclerotic properties of fisetin, a natural polyphenol compound. In this article, we reviewed the pharmacologic actions of fisetin on experimental atherosclerosis and its protective effects on disease-relevant cell types such as endothelial cells, macrophages, vascular smooth muscle cells, and platelets. Based on its profound cardiovascular actions, fisetin holds potential for clinical translation and could be developed as a potential therapeutic option for atherosclerosis and its related complications. Large-scale randomized clinical trials are warranted to ascertain the safety and efficacy of fisetin in patients with or high risk for ASCVD.

12.
Int J Biol Sci ; 20(3): 831-847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250153

RESUMEN

Mitochondria are energy-producing organelles that are mobile and harbor dynamic network structures. Although mitochondria and endoplasmic reticulum (ER) play distinct cellular roles, they are physically connected to maintain functional homeostasis. Abnormal changes in this interaction have been linked to pathological states, including cardiac hypertrophy. However, the exact regulatory molecules and mechanisms are yet to be elucidated. Here, we report that ATPase family AAA-domain containing protein 3A (ATAD3A) is an essential regulator of ER-mitochondria interplay within the mitochondria-associated membrane (MAM). ATAD3A prevents isoproterenol (ISO)-induced mitochondrial calcium accumulation, improving mitochondrial dysfunction and ER stress, which preserves cardiac function and attenuates cardiac hypertrophy. We also find that ATAD3A is a new substrate of NAD+-dependent deacetylase Sirtuin 3 (SIRT3). Notably, the heart mitochondria of SIRT3 knockout mice exhibited excessive formation of MAMs. Mechanistically, ATAD3A specifically undergoes acetylation, which reduces self-oligomerization and promotes cardiac hypertrophy. ATAD3A oligomerization is disrupted by acetylation at K134 site, and ATAD3A monomer closely interacts with the IP3R1-GRP75-VDAC1 complex, which leads to mitochondrial calcium overload and dysfunction. In summary, ATAD3A localizes to the MAMs, where it protects the homeostasis of ER-mitochondria contacts, quenching mitochondrial calcium overload and keeping mitochondrial bioenergetics unresponsive to ER stress. The SIRT3-ATAD3A axis represents a potential therapeutic target for cardiac hypertrophy.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Mitocondriales , Sirtuina 3 , Animales , Ratones , Calcio , Cardiomegalia/genética , Homeostasis , Mitocondrias , Sirtuina 3/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas Mitocondriales/genética
13.
J Agric Food Chem ; 72(28): 15704-15714, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38976778

RESUMEN

Pueraria lobata (Willd.) Ohwi, known as kudzu and used as a "longevity powder" in China, is an edible plant which is rich in flavonoids and believed to be useful for regulating blood sugar and treating diabetes, although the modes of action are unknown. Here, a total of 53 flavonoids including 6 novel compounds were isolated from kudzu using multidimensional preparative liquid chromatography. The flavonoid components were found to lower blood sugar levels, promote urine sugar levels in mice, and reduce the urine volume. Molecular docking and in vitro assays suggested that the antidiabetic effect of kudzu was attributed to at least three targets: sodium-dependent glucose transporter 2 (SGLT2), protein tyrosine phosphatase-1B (PTP1B), and alpha-glucosidase (AG). This study suggests a possible mechanism for the antidiabetic effect that may involve the synergistic action of multiple active compounds from kudzu.


Asunto(s)
Flavonoides , Hipoglucemiantes , Extractos Vegetales , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Pueraria , Pueraria/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Flavonoides/química , Animales , Ratones , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Simulación del Acoplamiento Molecular , Masculino , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Glucemia/metabolismo , Plantas Comestibles/química
14.
J Adv Res ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38432393

RESUMEN

INTRODUCTION: Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES: This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS: Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS: By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/ß-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/ß-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION: This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/ß-catenin signalling pathways.

15.
J Clin Invest ; 134(5)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206764

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) encompasses a disease continuum from simple steatosis to nonalcoholic steatohepatitis (NASH). However, there are currently no approved pharmacotherapies for NAFLD, although several drugs are in advanced stages of clinical development. Because of the complex pathophysiology and heterogeneity of NAFLD, the identification of potential therapeutic targets is clinically important. Here, we demonstrated that tripartite motif 56 (TRIM56) protein abundance was markedly downregulated in the livers of individuals with NAFLD and of mice fed a high-fat diet. Hepatocyte-specific ablation of TRIM56 exacerbated the progression of NAFLD, while hepatic TRIM56 overexpression suppressed it. Integrative analyses of interactome and transcriptome profiling revealed a pivotal role of TRIM56 in lipid metabolism and identified the lipogenesis factor fatty acid synthase (FASN) as a direct binding partner of TRIM56. TRIM56 directly interacted with FASN and triggered its K48-linked ubiquitination-dependent degradation. Finally, using artificial intelligence-based virtual screening, we discovered an orally bioavailable small-molecule inhibitor of FASN (named FASstatin) that potentiates TRIM56-mediated FASN ubiquitination. Therapeutic administration of FASstatin improved NAFLD and NASH pathologies in mice with an optimal safety, tolerability, and pharmacokinetics profile. Our findings provide proof of concept that targeting the TRIM56/FASN axis in hepatocytes may offer potential therapeutic avenues to treat NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Inteligencia Artificial , Dieta Alta en Grasa/efectos adversos , Ácido Graso Sintasas/genética , Enfermedad del Hígado Graso no Alcohólico/genética
16.
J Exp Med ; 221(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38695876

RESUMEN

Platinum-based chemotherapy drugs can lead to the development of anorexia, a detrimental effect on the overall health of cancer patients. However, managing chemotherapy-induced anorexia and subsequent weight loss remains challenging due to limited effective therapeutic strategies. Growth differentiation factor 15 (GDF15) has recently gained significant attention in the context of chemotherapy-induced anorexia. Here, we report that hepatic GDF15 plays a crucial role in regulating body weight in response to chemo drugs cisplatin and doxorubicin. Cisplatin and doxorubicin treatments induce hepatic Gdf15 expression and elevate circulating GDF15 levels, leading to hunger suppression and subsequent weight loss. Mechanistically, selective activation by chemotherapy of hepatic IRE1α-XBP1 pathway of the unfolded protein response (UPR) upregulates Gdf15 expression. Genetic and pharmacological inactivation of IRE1α is sufficient to ameliorate chemotherapy-induced anorexia and body weight loss. These results identify hepatic IRE1α as a molecular driver of GDF15-mediated anorexia and suggest that blocking IRE1α RNase activity offers a therapeutic strategy to alleviate the adverse anorexia effects in chemotherapy.


Asunto(s)
Anorexia , Doxorrubicina , Endorribonucleasas , Factor 15 de Diferenciación de Crecimiento , Hígado , Proteínas Serina-Treonina Quinasas , Pérdida de Peso , Proteína 1 de Unión a la X-Box , Animales , Humanos , Ratones , Anorexia/inducido químicamente , Anorexia/metabolismo , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Doxorrubicina/efectos adversos , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Factor 15 de Diferenciación de Crecimiento/efectos adversos , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética
17.
JAMA Neurol ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436973

RESUMEN

Importance: Stroke is a leading cause of death and disability in the US. Accurate and updated measures of stroke burden are needed to guide public health policies. Objective: To present burden estimates of ischemic and hemorrhagic stroke in the US in 2019 and describe trends from 1990 to 2019 by age, sex, and geographic location. Design, Setting, and Participants: An in-depth cross-sectional analysis of the 2019 Global Burden of Disease study was conducted. The setting included the time period of 1990 to 2019 in the US. The study encompassed estimates for various types of strokes, including all strokes, ischemic strokes, intracerebral hemorrhages (ICHs), and subarachnoid hemorrhages (SAHs). The 2019 Global Burden of Disease results were released on October 20, 2020. Exposures: In this study, no particular exposure was specifically targeted. Main Outcomes and Measures: The primary focus of this analysis centered on both overall and age-standardized estimates, stroke incidence, prevalence, mortality, and DALYs per 100 000 individuals. Results: In 2019, the US recorded 7.09 million prevalent strokes (4.07 million women [57.4%]; 3.02 million men [42.6%]), with 5.87 million being ischemic strokes (82.7%). Prevalence also included 0.66 million ICHs and 0.85 million SAHs. Although the absolute numbers of stroke cases, mortality, and DALYs surged from 1990 to 2019, the age-standardized rates either declined or remained steady. Notably, hemorrhagic strokes manifested a substantial increase, especially in mortality, compared with ischemic strokes (incidence of ischemic stroke increased by 13% [95% uncertainty interval (UI), 14.2%-11.9%]; incidence of ICH increased by 39.8% [95% UI, 38.9%-39.7%]; incidence of SAH increased by 50.9% [95% UI, 49.2%-52.6%]). The downturn in stroke mortality plateaued in the recent decade. There was a discernible heterogeneity in stroke burden trends, with older adults (50-74 years) experiencing a decrease in incidence in coastal areas (decreases up to 3.9% in Vermont), in contrast to an uptick observed in younger demographics (15-49 years) in the South and Midwest US (with increases up to 8.4% in Minnesota). Conclusions and Relevance: In this cross-sectional study, the declining age-standardized stroke rates over the past 3 decades suggest progress in managing stroke-related outcomes. However, the increasing absolute burden of stroke, coupled with a notable rise in hemorrhagic stroke, suggests an evolving and substantial public health challenge in the US. Moreover, the significant disparities in stroke burden trends across different age groups and geographic locations underscore the necessity for region- and demography-specific interventions and policies to effectively mitigate the multifaceted and escalating burden of stroke in the country.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA