Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Plant Sci ; 15: 1400309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984159

RESUMEN

Background: Grass-legume mixture can effectively improve productivity and stimulate overyielding in artificial grasslands, but may be N-limited in semi-arid regions. This study investigated the effects of N addition on chlorophyll fluorescence and production in the grass-legume mixtures community. Methods: An N addition experiment was conducted in the Bothriochloa ischaemum and Lespedeza davurica mixture community, with seven mixture ratios (B0L10, B2L8, B4L6, B5L5, B6L4, B8L2, and B10L0) according to the sowing abundance of B.ischaemum and L.davurica and four N addition levels, N0, N25, N50, and N75 (0,25,50,75kgNhm-2 a-1), respectively. We analyzed the response of chlorophyll fluorescence parameters of the two species, the rapid light-response curves of chlorophyll fluorescence, as well as aboveground biomass (AGB) and overyielding. Results: Our results showed that the two species showed different photosynthetic strategies, with L.davurica having significantly higher initial fluorescence (Fo), effective photochemical quantum yield of PSII (ΦPSII), and coefficient of photochemical fluorescence quenching (qP) than B. ischaemum, consisting with results of rapid light-response curves. N addition and mixture ratio both had significant effects on chlorophyll fluorescence and AGB (p<0.001). The ΦPSII and qP of L.davurica were significantly lowest in B5L5 and B6L4 under N addition, and the effect of N varied with mixture ratio. The photosynthetic efficiency of B. ischaemum was higher in mixture than in monoculture (B10L0), and ΦPSII was significantly higher in N50 than in N25 and N50 at mixture communities except at B5L5. The community AGB was significantly higher in mixture communities than in two monocultures and highest at B6L4. In the same mixture ratio, the AGB was highest under the N50. The overyielding effects were significantly highest under the N75 and B6L4 treatments, mainly attributed to L.davurica. The partial least squares path models demonstrated that adding N increased soil nutrient content, and complementary utilization by B.ischaemum and L.davurica increased the photosynthetic efficiency. However, as the different photosynthetic strategies of these two species, the effect on AGB was offset, and the mixture ratio's effects were larger than N. Our results proposed the B6L4 and N50 treatments were the optimal combination, with the highest AGB and overyielding, moderate grass-legume ratio, optimal community structure, and forage values.

2.
Sci Total Environ ; 819: 153146, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041957

RESUMEN

Biochar-based slow-release fertilizers (BSRFs) are vital for the development of eco-friendly and sustainable agriculture. Considerable attention has been given to enhancing the efficiency of fertilizers (EEFs) by appropriate modification or binding to reduce nutrient waste and improve the slow-release effect on the growth of plants. In this study, sustained binding materials were presented for BSRF synthesis, including pyroligneous acids (PA), bio-oil (BO), and modified starch binder (MSB). The results show that the release ratio of phosphorus from PA + BO+MSB was 4.7%, 15.2%, and 21.2% slower than that of PA, BO, and MSB alone, respectively. The BSRFs were characterized by SEM, XRD, FT-IR, XPS, and EDS, and the release kinetic outcome revealed that PA + BO+MSB contributed to the formation of a satisfactory structure in the BSRFs. The MSB viscosity significantly influences the slow-release performance and accumulation of N, P, and K nutrients. Moreover, economic assessments showed that PA + BO+MSB exhibited the lowest cost.


Asunto(s)
Fertilizantes , Pirólisis , Fertilizantes/análisis , Fósforo , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química
3.
Plants (Basel) ; 11(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35161291

RESUMEN

This study applied grassland related multi-index and assessed the effects of climate change by investigating grassland responses to drought. This process was performed to study grassland vegetation dynamic accurately and evaluate the effect of drought in the Mongolian Plateau (MP). The spatial-temporal characteristics of grassland dynamic in terms of coverage (Fv), surface bareness (Fb), and net primary production (NPP) from 2000 to 2013 were explored. We implemented the maximum Pearson correlation to analyze the grassland vegetation in response to drought by using self-calibrating Palmer Drought Severity Index (scPDSI). Results show that Fv and NPP present an increasing trend (0.18 vs. 0.43). Fb showed a decreasing trend with a value of -0.16. The grassland Fv and NPP positively correlated with scPDSI, with a value of 0.12 and 0.85, respectively, and Fb was -0.08. The positive correlation between Fv and NPP accounted for 84.08%, and the positive correlation between Fv and scPDSI accounted for 93.88%. On the contrary, the area with a negative correlation between Fb and scPDSI was 57.43%. The grassland in the MP showed a recovery tendency. The increase in grassland caused by positive reaction was mainly distributed in the middle of Mongolia (MG), whereas that caused by counter response was mainly distributed in the east and west MG and northeast Inner Mongolia autonomous region of China (IM). The relevant results may provide useful information for policymakers about mitigation strategies against the inverse effects of drought on grassland and help to ease the losses caused by drought.

4.
Front Plant Sci ; 12: 723839, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745160

RESUMEN

The grasslands on the semi-arid Loess Plateau of China are expected to be particularly responsive to the size and frequency changes of extreme precipitation events because their ecological processes are largely driven by distinct soil moisture pulses. However, the plant growth and competitiveness of co-dominant species in response to the changes in the amount and timing of soil water are still unclear. Thus, two co-dominant species, Bothriochloa ischaemum and Lespedeza davurica, were grown in seven mixture ratios under three watering regimes [80 ± 5% pot soil capacity (FC) (high watering), 60 ± 5% FC (moderate watering), and 40 ± 5% FC (low watering)] in a pot experiment. The soil water contents were rapidly improved from low to moderate water and from moderate to high water, respectively, at the heading, flowering, and maturity stages of B. ischaemum, and were maintained until the end of the growing season of each species. The biomass production of both species increased significantly with the increased soil water contents, particularly at the heading and flowering periods, with a more pronounced increase in B. ischaemum in the mixtures. The root/shoot ratio of both species was decreased when the soil water availability increased at the heading or flowering periods. The total biomass production, water use efficiency (WUE), and relative yield total (RYT) increased gradually with the increase of B. ischaemum in the mixtures. The relative competition intensity was below zero in B. ischaemum, and above zero in L. davurica. The competitive balance index calculated for B. ischaemum was increased with the increase of the soil water contents. Bothriochloa ischaemum responded more positively to the periodical increase in soil water availability than L. davurica, indicating that the abundance of B. ischaemum could increase in relatively wet seasons or plenty-rainfall periods. In addition, the mixture ratio of 10:2 (B. ischaemum to L. davurica) was the most compatible combination for the improved biomass production, WUE, and RYTs across all soil water treatments.

5.
Sci Total Environ ; 799: 149482, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34365257

RESUMEN

Exogenous fertilization could efficiently improve grassland productivity and promote grassland restoration. Increasing fertilization may profoundly affect community stability, whereas the underlying compensatory dynamics among functional groups in regulating grassland stability remain unclear. Three different grasslands, annuals forb (AF) community, perennial grass (PG) community and perennial forb (PF) community, on semiarid Loess Plateau were selected. We designed a 3-year split-plot experiment (main-plot: 0, 25, 50, and 100 kg N ha-1 yr-1; subplot: 0, 20, 40 and 80 kg P2O5 ha-1 yr-1) to explore how N and P addition affects community stability and its relationship with species richness, species asynchrony and functional group stability. Temporal stability differed largely between functional groups under N and P addition, perennial forbs or grasses had higher stability than perennial legumes or annuals and biennials. Decreased stability of PG and PF communities was primarily due to reduced species asynchrony under N addition alone, while it attributed to increased dominance of perennial legumes after P addition alone. 50 and 100 kg N ha-1 yr-1 combined with P addition significantly increased dominance of annuals and biennials, but decreased stability of annuals and biennials, which caused significant declines in stability of the three communities. Significant species richness decline induced by N and P addition only occurred in AF community, which suppressed AF community stability through reducing species asynchrony. AF community stability was regulated by additively negative effect of diversity decline and decreased annuals and biennials stability. Whereas, in PG and PF communities, nutrient-induced changes of functional groups stability were the main driver of community stability rather than diversity. Our study highlights the role of functional group composition and dynamics in regulating the effects of diversity on community stability and rational N and P combined addition was essential for conserving stability of different grasslands on semiarid Loess Plateau.


Asunto(s)
Fabaceae , Pradera , Biodiversidad , Poaceae
6.
Front Plant Sci ; 9: 165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29487611

RESUMEN

Water and fertilizers affect the nitrogen (N) and phosphorus (P) acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root) and plant level of Lespedeza davurica (C3 legume), were examined when intercropped with Bothriochloa ischaemum (C4 grass). The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC), -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica, but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1-17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica. The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering rehabilitating degraded grassland via fertilization application in semiarid Loess Plateau region.

7.
Front Plant Sci ; 9: 1050, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30131814

RESUMEN

Rainfall is the main resource of soil moisture in the semiarid areas, and the altered rainfall pattern would greatly affect plant growth and development. Root morphological traits are critical for plant adaptation to changeable soil moisture. This study aimed to clarify how root morphological traits of Bothriochloa ischaemum (a C4 herbaceous species) and Lespedeza davurica (a C3 leguminous species) in response to variable soil moisture in their mixtures. The two species were co-cultivated in pots at seven mixture ratios under three soil water regimes [80% (HW), 60% (MW), and 40% (LW) of soil moisture field capacity (FC)]. At the jointing, flowering, and filling stages of B. ischaemum, the LW and MW treatments were rewatered to MW or HW, respectively. At the end of growth season, root morphological traits of two species were evaluated. Results showed that the root morphological response of B. ischaemum was more sensitive than that of L. davurica under rewatering. The total root length (TRL) and root surface area (RSA) of both species increased as their mixture ratio decreased, which suggested that mixed plantation of the two species would be beneficial for their own root growth. Among all treatments, the increase of root biomass (RB), TRL, and RSA reached the highest levels when soil water content increased from 40 to 80% FC at the jointing stage. Our results implied that species-specific response in root morphological traits to alternated rainfall pattern would greatly affect community structure, and large rainfall occurring at early growth stages would greatly increase their root growth in the semiarid environments.

8.
Plant Physiol Biochem ; 130: 613-622, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30121513

RESUMEN

The multifunctional Orange (Or) protein plays crucial roles in carotenoid homeostasis, photosynthesis stabilization, and antioxidant activity in plants under various abiotic stress conditions. The Or gene has been cloned in several crops but not in alfalfa (Medicago sativa L.). Alfalfa is widely cultivated across the world; however, its cultivation is largely limited by various abiotic stresses, including drought. In this study, we isolated the Or gene from alfalfa (MsOr) cv. Xinjiang Daye. The amino acid sequence of the deduced MsOr protein revealed that the protein contained two trans-membrane domains and a DnaJ cysteine-rich zinc finger domain, and showed a high level of similarity with the Or protein of other plants species. The MsOr protein was localized in leaf chloroplasts of tobacco. The expression of MsOr was the highest in mature leaves and was significantly induced by abiotic stresses, especially drought. To perform functional analysis of the MsOr gene, we overexpressed MsOr gene in tobacco (Nicotiana benthamiana). Compared with wild-type (WT) plants, transgenic tobacco lines showed higher carotenoid accumulation and increased tolerance to various abiotic stresses, including drought, heat, salt, and methyl viologen-mediated oxidative stress. Additionally, contents of hydrogen peroxide and malondialdehyde were lower in the transgenic lines than in WT plants, suggesting superior membrane stability and antioxidant capacity of TOR lines under multiple abiotic stresses. These results indicate the MsOr gene as a potential target for the development of alfalfa cultivars with enhanced carotenoid content and tolerance to multiple environmental stresses.


Asunto(s)
Carotenoides/metabolismo , Genes de Plantas/genética , Proteínas de Choque Térmico/genética , Medicago sativa/genética , Nicotiana/genética , Proteínas de Plantas/genética , Cloroplastos/genética , Deshidratación , Perfilación de la Expresión Génica , Genes de Plantas/fisiología , Proteínas de Choque Térmico/fisiología , Respuesta al Choque Térmico , Estrés Oxidativo , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tolerancia a la Sal , Nicotiana/metabolismo , Nicotiana/fisiología
9.
Chin J Traumatol ; 9(3): 152-60, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16723073

RESUMEN

OBJECTIVE: To investigate the effect of autocontrol micromotion locking nail (AMLN) on experimental fracture healing and its mechanism. METHODS: 16 goats undergoing both sides of transverse osteotomy of the femoral shafts were fixed intramedullary with AMLN and Gross-Kempf (GK) nail, respectively. The follow-up time was 7, 14, 28 and 56 days. Roentgenographic, biomechanical, histological, scanning electromicroscopic and biochemical analyses were done. RESULTS: (1) The strength of anticompression, antiflexion and antitorsion in the fractural end in the AMLN-fixed group was higher than that of GK nail-fixed group; whereas, the rate of stress shelter in the fractured end decreased significantly (P<0.01). (2) The content of the total collagen, insoluble collagen, calcium and phosphate in the AMLN-fixed group was higher than that in the GK nail-fixed group (P<0.05). (3) Histological observation and quantitative analysis of calluses revealed that AMLN could promote the growth of bridge calluses and periosteum calluses. Hence the fracture healing and remolding process achieved early, which was much better than traditional GK nail fixation. (P<0.05). (4) 7-14 days postoperation, the calluses of AMLN-fixed group was flourish and camellarly arranged and the collagen fibril formed constantly in the absorption lacuna of bone trabecula. 28-56 days postoperation, the collagen fibril was flourish around the absorption lacuna and was parallel to the bone's longitudinal axis. Active bony absorption and formation were seen, so was remolding and rebuilding. Haversian system was intact and the bony structural net was very tenacious because of the deposition of calcium salt. None of the above findings was observed in the GK nail-fixed group. CONCLUSIONS: The design of AMLN accords well with the plastic fixation theory. As the geometry ametabolic system constituted by the intramedullary fixation instruments and the proximal and distal end of the fracture is very firm and stable, the disturbance to the physical stress distributed in the fractural end is light. The generation and conduct of the intermittent physical stress between the fractural parts could reach the balance between stress conduct and stress protection. The feature that the healing and remolding take place at the same time speeds up the fractural healing process.


Asunto(s)
Clavos Ortopédicos , Fracturas del Fémur/cirugía , Fijación Intramedular de Fracturas/instrumentación , Curación de Fractura/fisiología , Animales , Fenómenos Biomecánicos , Cabras , Microscopía Electrónica de Rastreo , Estrés Mecánico
10.
Plant Sci ; 181(6): 644-51, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21958706

RESUMEN

A better understanding of the growth and interspecific competition of native dominant species under water stress should aid in prediction of succession in plant communities. In addition, such research would guide the selection of appropriate conservation and agricultural utilization of plants in semiarid environments that have not been very well characterized. Biomass production and allocation, relative competitive ability and water use efficiency of one C(4) herbaceous grass (Bothriochloa ischaemum) and one C(3) leguminous subshrub (Lespedeza davurica), both important species from the semiarid Loess Plateau of China, were investigated in a pot-cultivation experiment. The experiment was conducted using a replacement series design in which B. ischaemum and L. davurica were grown with twelve plants per pot, in seven combinations of the two species (12:0, 10:2, 8:4, 6:6, 4:8, 2:10, and 0:12). Three levels of water treatments included sufficient water supply (HW), moderate water stress (MW) and severe water stress (LW). These treatments were applied after seedling establishment and remained until the end of the experiment. Biomass production and its partitioning, and transpiration water use efficiency (TWUE) were determined at the end of the experiment. Interspecific competitive indices (competitive ratio (CR), aggressiveness (A) and relative yield total (RYT)) were calculated from the dry weight for shoots, roots and total biomass. Water stress decreased biomass production of both species in monoculture and mixture. The growth of L. davurica was restrained in their mixtures for each water treatment. L. davurica had significantly (P<0.05) greater root:shoot allocation than B. ischaemum for each water treatment and proportion within the replacement series. Aggressiveness (A) values for B. ischaemum with respect to L. davurica were negative only at the proportions of B. ischaemum to L. davurica being 8:4 and 10:2 in LW treatment. B. ischaemum had a significantly (P<0.05) higher CR value under each water treatment, and water stress considerably reduced its relative CR while increased that of L. davurica. RYT values of the two species indicated some degree of resource complimentarity under both water sufficient and deficit conditions. The results suggest that it is advantageous for growing the two species together to maximize biomass production, and the suggested ratio was 10:2 of B. ischaemum to L. davurica because of significantly higher (P<0.05) RYT and TWUE under low water availability condition.


Asunto(s)
Biomasa , Lespedeza/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Agua/fisiología , Biocombustibles , China , Ecosistema
11.
Zhonghua Zheng Xing Wai Ke Za Zhi ; 19(5): 367-8, 2003 Sep.
Artículo en Zh | MEDLINE | ID: mdl-15179879

RESUMEN

OBJECTIVE: To search an ideal method for treatment of severe blepharoptosis. METHODS: Fifty-four eyes of 47 patients with severe blepharoptosis were undergoing for the treatment with a frontalis muscle complex flap, included in the frontalis muscle, orbicularis oculi muscle and SMAS membranes, to suspend the dropped eyelids. RESULTS: The 54 eyes with severe blepharoptosis were successfully treated with the frontalis muscle complex suspension technique. Although the lagophthalmos in different degrees was shown in 3 months after the operation, it usually disappeared 6 months after the operation. The results were shown good appearance without recurrence. CONCLUSION: The above mentioned technique may be a good and effective method for treatment of the severe blepharoptosis, compared with the traditional technique.


Asunto(s)
Blefaroptosis/cirugía , Cirugía Plástica/métodos , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA