Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS Pathog ; 19(6): e1010889, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37285391

RESUMEN

Satellites associated with plant or animal viruses have been largely detected and characterized, while those from mycoviruses together with their roles remain far less determined. Three dsRNA segments (dsRNA 1 to 3 termed according to their decreasing sizes) were identified in a strain of phytopathogenic fungus Pestalotiopsis fici AH1-1 isolated from a tea leaf. The complete sequences of dsRNAs 1 to 3, with the sizes of 10316, 5511, and 631 bp, were determined by random cloning together with a RACE protocol. Sequence analyses support that dsRNA1 is a genome of a novel hypovirus belonging to genus Alphahypovirus of the family Hypoviridae, tentatively named Pestalotiopsis fici hypovirus 1 (PfHV1); dsRNA2 is a defective RNA (D-RNA) generating from dsRNA1 with septal deletions; and dsRNA3 is the satellite component of PfHV1 since it could be co-precipitated with other dsRNA components in the same sucrose fraction by ultra-centrifuge, suggesting that it is encapsulated together with PfHV1 genomic dsRNAs. Moreover, dsRNA3 shares an identical stretch (170 bp) with dsRNAs 1 and 2 at their 5' termini and the remaining are heterogenous, which is distinct from a typical satellite that generally has very little or no sequence similarity with helper viruses. More importantly, dsRNA3 lacks a substantial open reading frame (ORF) and a poly (A) tail, which is unlike the known satellite RNAs of hypoviruses, as well as unlike those in association with Totiviridae and Partitiviridae since the latters are encapsidated in coat proteins. As up-regulated expression of RNA3, dsRNA1 was significantly down-regulated, suggesting that dsRNA3 negatively regulates the expression of dsRNA1, whereas dsRNAs 1 to 3 have no obvious impact on the biological traits of the host fungus including morphologies and virulence. This study indicates that PfHV1 dsRNA3 is a special type of satellite-like nucleic acid that has substantial sequence homology with the host viral genome without encapsidation in a coat protein, which broadens the definition of fungal satellite.


Asunto(s)
Virus Fúngicos , Virus ARN , Satélite de ARN , Pestalotiopsis/genética , ARN Bicatenario/genética , Filogenia , ARN Viral/genética , Genoma Viral , Virus Fúngicos/genética , Sistemas de Lectura Abierta
2.
BMC Genomics ; 24(1): 528, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674131

RESUMEN

BACKGROUND: Colletotrichum camelliae, one of the most important phytopathogenic fungi infecting tea plants (Camellia sinensis), causes brown blight disease resulting in significant economic losses in yield of some sensitive cultivated tea varieties. To better understand its phytopathogenic mechanism, the genetic information is worth being resolved. RESULTS: Here, a high-quality genomic sequence of C. camelliae (strain LT-3-1) was sequenced using PacBio RSII sequencing platform, one of the most advanced Three-generation sequencing platforms and assembled. The result showed that the fungal genomic sequence is 67.74 Mb in size (with the N50 contig 5.6 Mb in size) containing 14,849 putative genes, of which about 95.27% were annotated. The data revealed a large class of genomic clusters potentially related to fungal pathogenicity. Based on the Pathogen Host Interactions database, a total of 1698 genes (11.44% of the total ones) were annotated, containing 541 genes related to plant cell wall hydrolases which is remarkably higher than those of most species of Colletotrichum and others considered to be hemibiotrophic and necrotrophic fungi. It's likely that the increase in cell wall-degrading enzymes reflects a crucial adaptive characteristic for infecting tea plants. CONCLUSION: Considering that C. camelliae has a specific host range and unique morphological and biological traits that distinguish it from other species of the genus Colletotrichum, characterization of the fungal genome will improve our understanding of the fungus and its phytopathogenic mechanism as well.


Asunto(s)
Camellia sinensis , Colletotrichum , Colletotrichum/genética , Genómica , Camellia sinensis/genética ,
3.
J Virol ; 96(9): e0031822, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35435725

RESUMEN

In this study, a novel positive-sense single-stranded RNA (+ssRNA) mycovirus, tentatively named Colletotrichum fructicola RNA virus 1 (CfRV1), was identified in the phytopathogenic fungus Colletotrichum fructicola. CfRV1 has seven genomic components, encoding seven proteins from open reading frames (ORFs) flanked by highly conserved untranslated regions (UTRs). Proteins encoded by ORFs 1, 2, 3, 5, and 6 are more similar to the putative RNA-dependent RNA polymerase (RdRp), hypothetical protein (P2), methyltransferase, and two hypothetical proteins of Hadaka virus 1 (HadV1), a capsidless 10- or 11-segmented +ssRNA virus, while proteins encoded by ORFs 4 and 7 showed no detectable similarity to any known proteins. Notably, proteins encoded by ORFs 1 to 3 also share considerably high similarity with the corresponding proteins of polymycoviruses. Phylogenetic analysis conducted based on the amino acid sequence of CfRV1 RdRp and related viruses placed CfRV1 and HadV1 together in the same clade, close to polymycoviruses and astroviruses. CfRV1-infected C. fructicola strains demonstrate a moderately attenuated growth rate and virulence compared to uninfected isolates. CfRV1 is capsidless and potentially encapsulated in vesicles inside fungal cells, as revealed by transmission electron microscopy. CfRV1 and HadV1 are +ssRNA mycoviruses closely related to polymycoviruses and astroviruses, represent a new linkage between +ssRNA viruses and the intermediate double-stranded RNA (dsRNA) polymycoviruses, and expand our understanding of virus diversity, taxonomy, evolution, and biological traits. IMPORTANCE A scenario proposing that dsRNA viruses evolved from +ssRNA viruses is still considered controversial due to intergroup knowledge gaps in virus diversity. Recently, polymycoviruses and hadakaviruses were found as intermediate dsRNA and +ssRNA stages, respectively, between +ssRNA and dsRNA viruses. Here, we identified a novel +ssRNA mycovirus, Colletotrichum fructicola RNA virus 1 (CfRV1), isolated from Colletotrichum fructicola in China. CfRV1 is phylogenetically related to the 10- or 11-segmented Hadaka virus 1 (HadV1) but consists of only seven genomic segments encoding two novel proteins. CfRV1 is naked and may be encapsulated in vesicles inside fungal cells, representing a potential novel lifestyle for multisegmented RNA viruses. CfRV1 and HadV1 are intermediate +ssRNA mycoviruses in the linkage between +ssRNA viruses and the intermediate dsRNA polymycoviruses and expand our understanding of virus diversity, taxonomy, and evolution.


Asunto(s)
Colletotrichum , Virus Fúngicos , Virus ARN , Colletotrichum/patogenicidad , Colletotrichum/virología , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Virus ARN/clasificación , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN
4.
Mikrochim Acta ; 190(1): 6, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36471087

RESUMEN

A nanozyme sensor array based on the ssDNA-distensible C3N4 nanosheet sensor elements for discriminating multiple mycotoxins commonly existing in contaminated cereals has been explored. The sensor array exploited (a) three DNA nonspecific sequences (A40, T40, C40) absorbed on the C3N4 nanosheets as sensor elements catalyzing the oxidation of TMB; (b) the presence of five mycotoxins affected the catalytic activity of three nanozymes with various degrees. The parameter (A0-A) was employed as the signal output to obtain the response patterns for different mycotoxins with the same concentration where A0 and A were the absorption peak values at 650 nm of oxTMB in the absence and presence of target mycotoxins, respectively. After the raw data was subjected to principal component analysis, 3D canonical score plots were obtained. The sensor array was capable of separating five mycotoxins from each other with 100% accuracy even if the concentration of the mycotoxins was as low as 1 nM. Moreover, the array performed well in discriminating the mycotoxin mixtures with different ratios. Importantly, the practicality of this sensor array was demonstrated by discriminating the five mycotoxins spiking in corn-free samples in 3D canonical score plots, validating that the sensor array can act as a flexible detection tool for food safety. A nanozyme sensor array was developed based on the ssDNA-distensible C3N4 NSs sensor elements for discriminating muitiple mycotoxins.


Asunto(s)
Micotoxinas , Micotoxinas/análisis , Grano Comestible/química , ADN de Cadena Simple , Zea mays
5.
Int J Mol Sci ; 23(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35682745

RESUMEN

Botryosphaeria spp. are important phytopathogenic fungi that infect a wide range of woody plants, resulting in big losses worldwide each year. However, their pathogenetic mechanisms and the related virulence factors are rarely addressed. In this study, seven lignin peroxidase (LiP) paralogs were detected in Botryosphaeria kuwatsukai, named BkLiP1 to BkLiP7, respectively, while only BkLiP1 was identified as responsible for the vegetative growth and virulence of B. kuwatsukai as assessed in combination with knock-out, complementation, and overexpression approaches. Moreover, BkLiP1, with the aid of a signal peptide (SP), is translocated onto the cell wall of B. kuwatsukai and secreted into the apoplast space of plant cells as expressed in the leaves of Nicotiana benthamiana, which can behave as a microbe-associated molecular pattern (MAMP) to trigger the defense response of plants, including cell death, reactive oxygen species (ROS) burst, callose deposition, and immunity-related genes up-regulated. It supports the conclusion that BkLiP1 plays an important role in the virulence and vegetative growth of B. kuwatsukai and alternatively behaves as an MAMP to induce plant cell death used for the fungal version, which contributes to a better understanding of the pathogenetic mechanism of Botryosphaeria fungi.


Asunto(s)
Nicotiana , Peroxidasas , Peroxidasas/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Nicotiana/metabolismo , Virulencia/genética
6.
Toxicol Appl Pharmacol ; 433: 115782, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34740634

RESUMEN

BACKGROUND: Epigallocatechin gallate (EGCG) has attracted increasing attention due to its beneficial effect on cardiovascular health. The aim of this study was to investigate the underlying mechanism by which EGCG protects against myocardial ischaemia/reperfusion injury (I/RI). METHODS: Murine myocardial I/RI and H2O2-induced cardiomyocyte injury models were established to evaluate the therapeutic effects of EGCG. In the myocardial I/RI mouse model, the echocardiographic parameters of ejection fraction (EF) and fraction shortening (FS) levels, infarct size, histological evaluation and transmission electron microscopy (TEM) were used to evaluate cardiac tissue damage and autophagy. MTT assays, TUNEL staining, flow cytometry and immunofluorescence (IF) were used to monitor cell viability, apoptosis and autophagy in vitro. qRT-PCR and western blotting were used to determine the mRNA and protein levels of key molecules, respectively. The epigenetic regulation of DUSP5 was assessed via RNA immunoprecipitation (RIP), RNA pull-down and chromatin immunoprecipitation (ChIP) assays. RESULTS: EGCG significantly improved cardiac function, reduced infarct size, enhanced cell viability and inhibited autophagic activity in both myocardial I/RI mouse models and H2O2-induced cardiomyocyte injury models. Moreover, EGCG suppressed H2O2- or myocardial I/R-increased Gm4419 expression, and Gm4419 overexpression dramatically abolished EGCG-mediated protective effects against myocardial I/RI. Mechanistically, Gm4419 epigenetically suppressed DUSP5 by recruiting EZH2, thus activating ERK1/2 pathway-mediated autophagy. Furthermore, the in vivo experiments further verified that the Gm4419-mediated disruptive effects of EGCG on myocardial I/RI were potentiated by DUSP5 knockdown but attenuated by DUSP5 overexpression. CONCLUSIONS: In conclusion, our findings demonstrated that EGCG protected against myocardial I/RI by modulating Gm4419/DUSP5/ERK1/2-mediated autophagy.


Asunto(s)
Catequina/análogos & derivados , Fosfatasas de Especificidad Dual/metabolismo , Epigénesis Genética , Silenciador del Gen , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , ARN Largo no Codificante/metabolismo , Animales , Autofagia/efectos de los fármacos , Catequina/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Peróxido de Hidrógeno/toxicidad , Masculino , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , ARN Largo no Codificante/genética , Transducción de Señal
8.
J Virol ; 88(13): 7517-27, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24760881

RESUMEN

UNLABELLED: Botryosphaeria dothidea is an important pathogenic fungus causing fruit rot, leaf and stem ring spots and dieback, stem canker, stem death or stool mortality, and decline of pear trees. Seven double-stranded RNAs (dsRNAs; dsRNAs 1 to 7 with sizes of 3,654, 2,773, 2,597, 2,574, 1,823, 1,623, and 511 bp, respectively) were identified in an isolate of B. dothidea exhibiting attenuated growth and virulence and a sectoring phenotype. Characterization of the dsRNAs revealed that they belong to two dsRNA mycoviruses. The four largest dsRNAs (dsRNAs 1 to 4) are the genomic components of a novel member of the family Chrysoviridae (tentatively designated Botryosphaeria dothidea chrysovirus 1 [BdCV1]), a view supported by the morphology of the virions and phylogenetic analysis of the putative RNA-dependent RNA polymerases (RdRps). Two other dsRNAs (dsRNAs 5 and 6) are the genomic components of a novel member of the family Partitiviridae (tentatively designated Botryosphaeria dothidea partitivirus 1 [BdPV1]), which is placed in a clade distinct from other established partitivirus genera on the basis of the phylogenetic analysis of its RdRp. The smallest dsRNA, dsRNA7, seems to be a noncoding satellite RNA of BdPV1 on the basis of the conservation of its terminal sequences in BdPV1 genomic segments and its cosegregation with BdPV1 after horizontal transmission. This is the first report of a chrysovirus and a partitivirus infecting B. dothidea and of a chrysovirus associated with the hypovirulence of a phytopathogenic fungus. IMPORTANCE: Our studies identified and characterized two novel mycoviruses, Botryosphaeria dothidea chrysovirus 1 (BdCV1) and Botryosphaeria dothidea partitivirus 1 (BdPV1), associated with the hypovirulence of an important fungus pathogenic to fruit trees. This is the first report of a chrysovirus and a partitivirus infecting B. dothidea and of a chrysovirus associated with the hypovirulence of a phytopathogenic fungus. BdCV1 appears to be a good candidate for the biological control of the serious disease induced by B. dothidea. Additionally, BdPV1 is placed in a clade distinct from the established genera. The BdCV1 capsid has two major structural proteins, and the capsid is distinct from that made up by a single polypeptide of the typical chrysoviruses. BdPV1 is the second partitivirus in which the putative capsid protein shares no significant identity with any mycovirus protein. A small accompanying dsRNA that is presumed to be a noncoding satellite RNA of BdPV1 is the first of its kind reported for a partitivirus.


Asunto(s)
Botrytis/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Pyrus/microbiología , Virus ARN/patogenicidad , ARN Bicatenario/metabolismo , Virulencia , Genoma Viral , Filogenia , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Bicatenario/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Plant Dis ; 99(12): 1704-1712, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30699520

RESUMEN

In recent years, a widespread canker disease that infects the branches of pear trees has been observed in many provinces in China; it kills the branches and results in high losses in fruit production. Symptomatic branches were collected for etiological isolation from 11 varieties of three pear species and from Malus pumila. Samples were collected from six provinces in China. In total, 143 Phomopsis isolates were obtained from 181 samples and these were identified as belonging to five species: Phomopsis fukushii (n = 69 isolates), Diaporthe eres (n = 31), P. amygdali (n = 22), P. longicolla (n = 13), and D. neotheicola (n = 8). Pathogenicity tests showed that only the first three species induced lesions on nonwounded branches of Pyrus pyrifolia var. Cuiguan. All the fungal species induced branch cankers following wound inoculations, and tests with additional pear varieties showed significantly higher virulence levels for the first three species than the latter two. A host range evaluation suggested that the five species could infect most fruit trees belonging to the Rosaceae family as well as some non-Rosaceous species. Virulence varied depending on the species of both host and pathogen. Isolates of Phomopsis amygdali had significantly higher virulence in all the tested Rosaceae plants. Correlations among the host, pathogen, and sampling regions were noted, and the morphology, growth rate, and sporulation of these species in varied media were also characterized. This study presents the first attempt to perform a broad survey and characterization of the Phomopsis spp. associated with the pear shoot cankers in China. This study shows that D. eres and P. amygdali are just as responsible for the pear shoot canker diseases as P. fukushii, and it expands the host and geographic ranges of the five species. This report provides useful information for understanding and improving management strategies for controlling this economically important disease.

10.
Materials (Basel) ; 17(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38673275

RESUMEN

Ecological porous concrete (EPC) is one of the novel formulations of concrete with unique phytogenic properties. However, achieving both low alkalinity and high strength in EPC proves challenging due to the inherently high alkalinity of the pore environment, which hinders the growth of the plant and affects its ecological benefits significantly. This research investigated the utilization of 15 types of chemical admixtures and diatomaceous earth as alkali-reducing agents to optimize the properties of silicate cementitious materials for the applications of EPC. To identify the most effective agents, the pH value and compressive strength of the cement paste were adopted as the screening criteria for the selection of the essential alkali-reducing ingredients. Subsequently, a composite approach combining chemical admixtures and DE was employed to explore the synergistic effects on the pH and strength of silicate cementitious materials. The results revealed that a combination of 8% DE, 5% oxalic acid, and 5% iron sulfate functioned effectively and resulted in desirable performance for the concrete. This synergistic blend effectively consumed a large amount of Ca(OH)2, reducing the pH of cement paste to 10.48 within 3 days. Furthermore, the hydration reaction generated C-S-H with a low Ca/Si ratio, leading to a remarkable increase in the compressive strength of the concrete, reaching 89.7 MPa after 56 days. This composite approach ensured both low alkalinity and high strength in silicate cementitious materials, providing a theoretical basis for the application and promotion of EPC in the ecological field.

11.
Sci Rep ; 14(1): 5677, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454104

RESUMEN

Hypertension is a disease closely related to inflammation, and the systemic immunity-inflammation index (SII) is a new and easily detectable inflammatory marker. We aimed to investigate the association between SII and hypertension risk in a adult population in the US. We utilized data from the National Health and Nutrition Examination Survey spanning from 1999 to 2018, incorporating comprehensive information from adults reporting hypertension. This included details on blood pressure monitoring, complete blood cell counts, and standard biochemical results. The SII was computed as the platelet count multiplied by the neutrophil count divided by the lymphocyte count. We employed a weighted multivariate logistic regression model to examine the correlation between SII and hypertension. Subgroup analyses were conducted to explore potential influencing factors. Furthermore, smooth curve fitting and two-piecewise logistic regression analysis were employed to describe non-linear relationships and identify inflection points. This population-based study involved 44,070 adults aged 20-85 years. Following Ln-transformation of the SII, multivariable logistic regression revealed that, in a fully adjusted model, participants in the highest quartile of Ln(SII) had a 12% increased risk of hypertension compared to those in the lowest quartile, which was statistically significant (OR:1.12; 95% CI 1.01, 1.24; P < 0.001), with a P for trend = 0.019. Subgroup analysis indicated no significant interactions between Ln(SII) and specific subgroups except for the body mass index subgroup (all P for interaction > 0.05). Additionally, the association between Ln(SII) and hypertension displayed a U-shaped curve, with an inflection point at 5.89 (1000 cells/µl). Based on this research result, we found a U-shaped correlation between elevated SII levels and hypertension risk in American adults, with a inflection point of 5.89 (1000 cells)/µl). To validate these findings, larger scale prospective surveys are needed to support the results of this study and investigate potential mechanisms.


Asunto(s)
Hipertensión , Adulto , Humanos , Encuestas Nutricionales , Estudios Prospectivos , Hipertensión/epidemiología , Determinación de la Presión Sanguínea , Inflamación
12.
Front Microbiol ; 15: 1448885, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086649

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2021.757556.].

13.
Front Plant Sci ; 15: 1411689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193216

RESUMEN

Detecting and controlling tea pests promptly are crucial for safeguarding tea production quality. Due to the insufficient feature extraction ability of traditional CNN-based methods, they face challenges such as inaccuracy and inefficiency of detecting pests in dense and mimicry scenarios. This study proposes an end-to-end tea pest detection and segmentation framework, TeaPest-Transfiner (TP-Transfiner), based on Mask Transfiner to address the challenge of detecting and segmenting pests in mimicry and dense scenarios. In order to improve the feature extraction inability and weak accuracy of traditional convolution modules, this study proposes three strategies. Firstly, a deformable attention block is integrated into the model, which consists of deformable convolution and self-attention using the key content only term. Secondly, the FPN architecture in the backbone network is improved with a more effective feature-aligned pyramid network (FaPN). Lastly, focal loss is employed to balance positive and negative samples during the training period, and parameters are adapted to the dataset distribution. Furthermore, to address the lack of tea pest images, a dataset called TeaPestDataset is constructed, which contains 1,752 images and 29 species of tea pests. Experimental results on the TeaPestDataset show that the proposed TP-Transfiner model achieves state-of-the-art performance compared with other models, attaining a detection precision (AP50) of 87.211% and segmentation performance of 87.381%. Notably, the model shows a significant improvement in segmentation average precision (mAP) by 9.4% and a reduction in model size by 30% compared to the state-of-the-art CNN-based model Mask R-CNN. Simultaneously, TP-Transfiner's lightweight module fusion maintains fast inference speeds and a compact model size, demonstrating practical potential for pest control in tea gardens, especially in dense and mimicry scenarios.

14.
ACS Nano ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38988308

RESUMEN

Metal-organic frameworks (MOFs) are a class of porous materials constructed from organic linkers and inorganic building blocks. Coordinative competition labilizes some MOFs under harsh chemical conditions because of their weak bonding. However, instability is not always a negative property of a material. In this study, we demonstrated the use of the acidic lability of MOFs for direct optical patterning. The controllable acid release from the photoacid generator at the exposed area causes bond cleavage between the linkers and metal ions/clusters, leading to solubility changes and pattern formation after development. This process avoids redundant steps and possible contamination in traditional photolithography, while maintaining the original properties of patterned MOFs. The preserved porosity and crystallinity promoted the development of MOFs for gas sensors and solid displays.

15.
Int J Food Microbiol ; 411: 110517, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38096676

RESUMEN

This study aims to investigate the potential role of lactose on cereulide biosynthesis by emetic Bacillus cereus in dairy matrices. The cereulide yields in whole milk and lactose-free milk were investigated using the emetic reference strain F4810/72. To eliminate the influence of complex food substrates, the LB medium model was further used to characterize the effect of lactose on cereulide produced by F4810/72 and five other emetic B. cereus strains. Results showed that the lactose-free milk displayed a 13-fold higher amount of cereulide than whole milk, but the cereulide level could be reduced by 91 % when the lactose content was restored. The significant inhibition of lactose on cereulide yields of all tested B. cereus strains was observed in LB medium, showing a dose-dependent manner with inhibition rates ranging of 89-98 %. The growth curves and lactose utilization patterns of all strains demonstrated that B. cereus cannot utilize lactose as a carbon source and lactose might act as a signal molecule to regulate cereulide production. Moreover, lactose strongly repressed the expression of cereulide synthetase genes (ces), possibly by inhibiting the key regulator Spo0A at the transcriptional level. Our findings highlight the potential of lactose as an effective strategy to control cereulide production in food.


Asunto(s)
Bacillus cereus , Depsipéptidos , Animales , Bacillus cereus/genética , Eméticos/metabolismo , Lactosa/metabolismo , Leche/metabolismo , Depsipéptidos/farmacología
16.
World J Clin Cases ; 12(18): 3629-3635, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38983401

RESUMEN

BACKGROUND: The midpoint transverse process to pleura (MTP) block, a novel technique for thoracic paravertebral block (TPVB), was first employed in laparoscopic renal cyst decortication. CASE SUMMARY: Thoracic paravertebral nerve block is frequently employed for perioperative analgesia during laparoscopic cyst decortication. To address safety concerns associated with TPVBs, we administered MTP blocks in two patients prior to administering general anesthesia for laparoscopic cyst decortication. The MTP block was performed at the T9 level under ultrasound guidance, with 20 mL of 0.5% ropivacaine injected. Reduced sensation to cold and pinprick was observed from the T8 to T11 dermatome levels. Immediately postoperative Numeric Pain Rating Scale scores were 0/10 at rest and on movement, with none exceeding a mean 24 h numeric rating scale > 3. CONCLUSION: MTP block was effective technique for providing postoperative analgesia for patients undergoing laparoscopic renal cyst decortication.

17.
J Environ Radioact ; 280: 107522, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39270424

RESUMEN

To address the lack of effective dose quantification methods for the model organism Caenorhabditis elegans (C. elegans) in radiation ecology research, this study employs remeshing techniques to develop a comprehensive mesh-type model covering multi-life stages, from embryonic to larval (L1, L2, L3, L4) and adulthood. Using these models, Dose Coefficients (DC) for C. elegans in a soil environment under different exposure conditions (external and internal), material settings, and radioactive nuclides (³H, 6°Co, 9°Sr, 129I, 1³1I, 1³4Cs, 1³7Cs) were calculated with the Monte Carlo toolkit Geant4. The results show that the difference in DC, when C. elegans material is set as either biological material or water, is within 5%. Under external exposure conditions, the impact of life stages on the population's average DC is minimal (with a maximum deviation not exceeding 10%). However, the distribution within the population varied significantly across life stages (under external exposure to 137Cs, the dispersion was 12.02% for adults and a considerably higher 60.30% for larvae). The earlier the life stage, the greater the variability in DC distribution within the C. elegans population. Furthermore, correlation analysis indicates a strong relationship between DC and life stages under internal exposure scenarios. The mesh-type model of C. elegans established in this study provides a valuable tool for radiation ecology research and has potential applications in broader research fields.

18.
Mol Plant ; 17(6): 955-971, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38745413

RESUMEN

Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.


Asunto(s)
ADN de Cadena Simple , Virus Fúngicos , Filogenia , Enfermedades de las Plantas , Virus Fúngicos/genética , Virus Fúngicos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , ADN de Cadena Simple/genética , Ascomicetos/virología , Ascomicetos/fisiología , Virus ADN/genética , Resistencia a la Enfermedad/genética , Genoma Viral , Pyrus/microbiología , Pyrus/virología , Nicotiana/virología , Nicotiana/microbiología
19.
Viruses ; 15(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36851700

RESUMEN

The next-generation sequencing method was developed in the second half of the 2000s and marked the beginning of high-throughput sequencing (HTS) analyses of viral communities [...].


Asunto(s)
Ecología , Virus de Plantas , Virus de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento
20.
World J Clin Cases ; 11(7): 1549-1559, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36926388

RESUMEN

BACKGROUND: Hyperthyroidism often leads to tachycardia, but there are also sporadic reports of hyperthyroidism with severe bradycardia, such as sick sinus syndrome (SSS) and atrioventricular block. These disorders are a challenge for clinicians. CASE SUMMARY: We describe three cases of hyperthyroidism with SSS and found 31 similar cases in a PubMed literature search. Through the analysis of these 34 cases, we found 21 cases of atrioventricular block and 13 cases of SSS, with 67.6% of the patients experiencing bradycardia symptoms. After drug treatment, temporary pacemaker implantation, or anti-hyperthyroidism treatment, the bradycardia of 27 patients (79.4%) was relieved, and the median recovery time was 5.5 (2-8) d. Only 7 cases (20.6%) needed permanent pacemaker implantation. CONCLUSION: Patients with hyperthyroidism should be aware of the risk of severe bradycardia. In most cases, drug treatment or temporary pacemaker placement is recommended for initial treatment. If the bradycardia does not improve after 1 wk, a permanent pacemaker should be implanted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA