Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009832

RESUMEN

Matcha, a powder processed from tea leaves, has a unique green tea flavor and appealing color, in addition to many other sought after functional properties for a wide range of formulated food applications (e.g., dairy products, bakery products, and beverage). The properties of matcha are influenced by cultivation method and processing post-harvest. The transition from drinking tea infusion to eating whole leaves provides a healthy option for the delivery of functional component and tea phenolics in various food matrix. The aim of this review is to describe the physico-chemical properties of matcha, the specific requirements for tea cultivation and industrial processing. The quality of matcha mainly depends on the quality of fresh tea leaves, which is affected by preharvest factors including tea cultivar, shading treatment, and fertilization. Shading is the key measure to increase greenness, reduce bitterness and astringency, and enhance umami taste of matcha. The potential health benefits of matcha and the gastrointestinal fate of main phenolics in matcha are covered. The chemical compositions and bioactivities of fiber-bound phenolics in matcha and other plant materials are discussed. The fiber-bound phenolics are considered promising components which endow matcha with boosted bioavailability of phenolics and health benefits through modulating gut microbiota.

2.
Crit Rev Food Sci Nutr ; : 1-11, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35900156

RESUMEN

Volatile organic compounds (VOCs) are produced by plants responding to biotic and abiotic stresses. According to their biosynthetic sources, induced VOCs are divided into three major classes: terpenoids, phenylpropanoid/benzenoid, and fatty acid derivatives. These compounds with specific aroma characteristics importantly contribute to the aroma quality of oolong tea. Shaking and rocking is the crucial procedure for the aroma formation of oolong tea by exerting mechanical damage to fresh tea leaves. Abundant studies have been carried out to investigate the formation mechanisms of VOCs during oolong tea processing in recent years. This review systematically introduces the biosynthesis of VOCs in plants, and the volatile changes due to biotic and abiotic stresses are summarized and expatiated, using oolong tea as an example.

3.
Molecules ; 26(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34299529

RESUMEN

Aroma deterioration is one of the biggest problems in processing tea beverages. The aroma of tea infusion deteriorates fast during heat sterilization and the presence of ferrous ion (Fe2+) aggravates it. The underlying mechanism remains unveiled. In this study, Fe2+ was verified to deteriorate the aroma quality of green tea infusion with heat treatment. Catechins were necessary for Fe2+-mediated aroma deterioration. By enhancing the degradation of catechins, Fe2+ dramatically increased the production of hydrogen peroxide (H2O2). Fe2+ and H2O2 together exacerbated the aroma of green tea infusion with heat treatment. GC-MS analysis revealed that the presence of Fe2+ enhanced the loss of green/grassy volatiles and promoted the formation of new volatiles with diversified aroma characteristics, resulting in a dull scent of green tea infusion. Our results revealed how Fe2+ induced aroma deterioration of green tea infusion with heat treatment and could help guide tea producers in attenuating the aroma deterioration of tea infusion during processing.


Asunto(s)
Compuestos Ferrosos/análisis , Odorantes/análisis , Té/química , Catequina/química , Cationes Bivalentes/análisis , Calor , Hierro/análisis , Esterilización
4.
J Food Sci Technol ; 55(3): 1185-1195, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29487461

RESUMEN

Flavor characteristics and chemical compositions of Tieguanyin oolong tea processed using different semi-fermentation times were investigated. Six flavor attributes of the teas, namely, astringency, bitterness, umami, sweet aftertaste, floral flavor, and green fruity flavor, were analysed. With extended semi-fermentation time, the taste intensity of sweet aftertaste increased, and the aroma intensity of floral and green fruity flavors increased, while the intensities of astringency, bitterness, and umami showed no clear trend. With increasing semi-fermentation time, the concentrations of gallated catechins, myricetin-rhamnose, quercetin-rutinoside, myricetin, and theanine greatly decreased, while those of total theaflavins, vitexin-rhamnose, kaempferol-galactose, kaempferol-rutinoside, vitexin, quercetin, and kaempferol increased significantly. The intensity of bitter taste was positively correlated with the concentrations of total catechins and gallated catechins. The intensity of astringent taste strongly correlated with the flavonoid concentrations, and that of sweet aftertaste positively correlated with the concentrations of (-)-epigallocatechin and (-)-epicatechin. However, dose-over-threshold analysis revealed that catechins, theaflavin, flavonol glycosides, and caffeine are the main taste-active compounds contributing to the taste of Tieguanyin oolong tea. The concentrations of total volatiles and most of the esters increased markedly with the semi-fermentation time, while the concentrations of low aldehydes showed a significant decrease. The flavor index was consistent with the intensity of floral aroma, increasing from 0.59 (12 h) to 0.84 (24 h) and then decreasing to 0.63 (32 h). Results of this work suggest that the flavor change is mainly due to the variation of taste-active and aroma-active compounds in oolong tea.

5.
J Food Sci Technol ; 54(12): 3908-3916, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29085133

RESUMEN

Fresh tea leaves were crushed into juice and then fermented (oxidation) to obtain fermented black tea juice, which can be used to prepare black tea beverage. The effects of addition of oolong tea infusion or tossing of tea leaves on the sensory quality and theaflavins (TFs) concentration of fermented black tea juice were investigated. The results showed that both addition of tea infusion and tossing of fresh tea leaves increased the TFs/thearubigins (TRs) ratio and improved the sensory quality of fermented black tea juice. The TFs/TRs ratio was found to be significantly correlated with the scores for flavor (r = 0.98), mouth feel (r = 0.94), and overall acceptability (r = 0.91) of the fermented black tea juices from different processes. This result suggested that a relatively high concentration of catechins and stepwise enzymatic oxidation were the crucial factors that increased the TFs/TRs ratio and improved the sensory quality. The combination of adding tea infusion and tossing fresh tea leaves greatly improved the quality of the fermented black tea juice by markedly increasing the TFs/TRs ratio (87%). Results of the present study provided useful information for improving the quality of fermented black tea juice.

6.
Curr Res Food Sci ; 8: 100701, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435275

RESUMEN

This study aimed to obtain an anthocyanin extract from the purple leaves of Camellia sinensis cv. Zijuan using a sustainable, non-toxic, and low-cost solid-liquid extraction, employing an aqueous citric acid solution (0.2 mol/L) as the extracting solvent, and to evaluate its chemical stability at different pH values, as well as its in vitro antioxidant properties in chemical and biological terms. The phenolic composition, in vitro antioxidant activity, and the stability of anthocyanins against pH, temperature, and light of the crude extract (CE) were evaluated, as well as the phenolic composition and bioactivity in the crude lyophilised extract (CLE). In the direct/reverse spectrophotometric titration, anthocyanins showed structural changes between pH 2 and 10, and reversibility of 80%. The antioxidant activity against the DPPH radical showed inhibition percentages of 73% (pH 4.5) to 39% (pH 10). Thermal stability was observed at 60 °C, and prolonged exposure of the extract to light caused photodegradation of the anthocyanins. Thirty-three phenolic compounds, including anthocyanins and catechins, were quantified in the CLE by UPLC-ESI-MS and HPLC, totalling 40.18 mg/g. CLE reduced cell viability (IC50 from 18.1 to 52.5 µg GAE/mL), exerted antiproliferative (GI50 from 0.0006 to 17.0 µg GAE/mL) and cytotoxic (LC50 from 33.2 to 89.9 µg GAE/mL) effects against A549 (human lung adenocarcinoma epithelial cells), HepG2 (hepatocellular carcinoma), HCT8 (ileocecal colorectal adenocarcinoma), and Eahy926 (somatic cell hybrid cells); and showed protection against oxidation of human plasma (635 ± 30 mg AAE/g). The results showed the diversity of compounds in the extracts and their potential for technological applications; however, temperature, pH, and light must be considered to avoid diminishing their bioactivity.

8.
Food Chem X ; 21: 101099, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235347

RESUMEN

Variations in the quality of brewing water profoundly impact tea flavor. This study systematically investigated the effects of four common water sources, including pure water (PW), mountain spring water (MSW), mineral water (MW) and natural water (NW) on the flavor of Tieguanyin tea infusion. Brewing with MW resulted in a flat taste and turbid aroma, mainly due to the low leaching of tea flavor components and complex interactions with mineral ions (mainly Ca2+, Mg2+). Tea infusions brewed with NW exhibited the highest relative contents of total volatile compounds, while those brewed with PW had the lowest. NW and MSW, with moderate mineralization, were conducive to improving the aroma quality of tea infusion and were more suitable for brewing both aroma types of Tieguanyin. These findings offer valuable insights into the effect of brewing water on the sensory and physicochemical properties of oolong teas.

9.
Hortic Res ; 11(1): uhad231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288253

RESUMEN

Flavonoids are important compounds in tea leaves imparting bitter and astringent taste, which also play key roles in tea plants responding to environmental stress. Our previous study showed that the expression level of CsMYB67 was positively correlated with the accumulation of flavonoids in tea leaves as exposed to sunlight. Here, we newly reported the function of CsMYB67 in regulating flavonoid biosynthesis in tea leaves. CsMYB67 was localized in the nucleus and responded to temperature. The results of transient expression assays showed the co-transformation of CsMYB67 and CsTTG1 promoted the transcription of CsANS promoter in the tobacco system. CsTTG1 was bound to the promoter of CsANS based on the results of yeast one-hybrid (Y1H) and transient expression assays, while CsMYB67 enhanced the transcription of CsANS through protein interaction with CsTTG1 according to the results of yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC). Thus, CsMYB67-CsTTG1 module enhanced the anthocyanin biosynthesis through up-regulating the transcription of CsANS. Besides, CsMYB67 also enhanced the transcription of CsFLS and CsUFGT through forming transcription factor complexes. The function of CsMYB67 on flavonoid biosynthesis in tea leaves was validated by gene suppression assay. As CsMYB67 was suppressed, the transcriptional level of CsFLS was greatly reduced, leading to a significant increase in the contents of total catechins and total anthocyanidins. Hence, CsMYB67 plays an important role in regulating the downstream pathway of flavonoid biosynthesis in summer tea leaves.

10.
Food Chem ; 450: 139373, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640534

RESUMEN

In this study, widely targeted metabolomics and chemometrics were utilized to comprehensively analyse the formation of taste compounds in Longjing green tea. A total of 580 non-volatile metabolites were identified by using ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry, and alterations in three metabolic pathways were investigated. Notably, the fixation process reduced phosphatidic acid levels, resulting in the formation of lyso-phosphatidylcholine and lyso-phosphatidylethanolamine, as well as the release of esterified polyunsaturated fatty acids. Baiye No.1 had high levels of L-glutamic acid and l-glutamine, while Longjing 43 showed elevated levels of flavones. Correlation analysis and sensory verification indicated that the specific concentration of L-leucine could decrease the umami of the tea. These findings advance our understanding of Longjing green tea quality improvement and cultivar development.


Asunto(s)
Camellia sinensis , Metabolómica , Gusto , , Té/química , Té/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/crecimiento & desarrollo , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas en Tándem , Manipulación de Alimentos , Espectrometría de Masa por Ionización de Electrospray
11.
Food Chem ; 438: 138051, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38056097

RESUMEN

To improve the quality of osmanthus black tea, samples produced with different scenting methods were prepared. The sensory quality was assessed and the characteristic aromatic components were explored using solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry. According to the results, osmanthus black tea obtained by adding osmanthus scenting in the fermentation process had the strongest floral aroma. The major contributors to the aroma of osmanthus black tea were identified as ß-ionone, dihydro-ß-ionone, benzeneacetaldehyde, citral, geraniol, and linalool by calculating their relative odor activity values. An analysis of the causes revealed that the moisture content of tea dhool significantly affected the adsorption of fresh flower aroma by tea. The experimental results showed that osmanthus black tea produced using tea dhool containing 30% moisture content had the highest content of crucial aroma components, suggesting the tea dhool under this condition had the strongest adsorption capacity for osmanthus aroma.


Asunto(s)
Camellia sinensis , Oleaceae , Compuestos Orgánicos Volátiles , Té/química , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Camellia sinensis/química
12.
J Food Sci Technol ; 50(1): 171-5, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24425904

RESUMEN

Free amino acids are important chemical components which impact the taste of green tea infusion. The hydrolysis of water-insoluble protein in the green tea residue helps to increase the contents of free amino acids components except theanine. Studies indicate that the hydrolysis of the tea protein could be restricted due to interaction of polyphenols with protein. The experiment indicates that the hydrolysis of tea protein by protease is the main trend when the polyphenols concentration is lower than 5 mg ml(-1), however, the proteins (including tea protein and protease) would interact with polyphenoles instead of hydrolysis when the concentration of polyphenols is higher than 5 mg ml(-1). The hydrolysis of tea protein is absolutely restrained when concentration comes to 10 mg ml(-1).

13.
Foods ; 12(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37959063

RESUMEN

The origins of tea, a traditional beverage in China, can be traced back to the Shennong period, about 2737 years before the birth of Christ [...].

14.
Front Nutr ; 10: 1142971, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051128

RESUMEN

Albino tea cultivars are mutant tea plants with altered metabolisms. Current studies focus on the leaves while little is known about the flowers. To evaluate tea flowers from different albino cultivars, the chemical composition and anti-cholesterol activity of tea flowers from three albino cultivars (i.e., Baiye No.1, Huangjinya, and Yujinxiang) were compared. According to the results, tea flowers from Yujinxiang had more amino acids but less polyphenols than tea flowers from the other two albino cultivars. A reduced content of procyanidins and a high chakasaponins/floratheasaponins ratio were characteristics of tea flowers from Yujinxiang. In vitro anti-cholesterol activity assays revealed that tea flowers from Yujinxiang exhibited stronger activity in decreasing the micellar cholesterol solubility, but not in cholesterol esterase inhibition and bile salt binding. It was noteworthy that there were no specific differences on the chemical composition and anti-cholesterol activity between tea flowers from albino cultivars and from Jiukeng (a non-albino cultivar). These results increase our knowledges on tea flowers from different albino cultivars and help food manufacturers in the cultivar selection of tea flowers for use.

15.
Food Chem ; 427: 136711, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37390734

RESUMEN

Roasting is essential for processing large-leaf yellow tea (LYT). However, the effect of the roasting on the metabolic and sensory profiles of LYT remains unknown. Herein, the metabolomics and sensory quality of LYT at five roasting degrees were evaluated by liquid/gas chromatography mass spectrometry and quantitative descriptive analysis. A higher degree of roasting resulted in a significantly stronger crispy rice, fried rice, and smoky-burnt aroma (p < 0.05), which is closely associated with heterocyclic compound accumulation (concentrations: 6.47 ± 0.27 - 1065.00 ± 5.58 µg/g). Amino acids, catechins, flavonoid glycosides and N-ethyl-2-pyrrolidone-substituted flavan-3-ol varied with roasting degree. The enhancement of crispy-rice and burnt flavor coupled with the reduction of bitterness and astringency. Correlations analysis revealed the essential compounds responsible for roasting degree, including 2,3-diethyl-5-methylpyrazine, hexanal, isoleucine, N-ethyl-2-pyrrolidone-substituted flavan-3-ol (EPSF), and others. These findings provide a theoretical basis for improving the specific flavors of LYT.


Asunto(s)
Catequina , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Catequina/análisis , Hojas de la Planta/química , Odorantes/análisis , Té/química , Compuestos Orgánicos Volátiles/análisis
16.
Food Chem ; 408: 135135, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36527922

RESUMEN

Atmospheric solids analysis probe-mass spectrometry (ASAP-MS), an ambient mass spectrometry technique, was used to differentiate spring and autumn Tieguanyin teas. Two configurations were used to obtain their chemical fingerprints - ASAP attached to a high-resolution quadrupole time-of-flight mass spectrometer (i.e., ASAP-QTOF) and to a single-quadrupole mass spectrometer (i.e., Radian™ ASAP™ mass spectrometer). Then, orthogonal projections to latent structures-discriminant analysis was conducted to identify features that held promise in differentiating harvest seasons. Four machine learning models - decision tree, linear discriminant analysis, support vector machine, and k-nearest neighbour - were built using these features, and high classification accuracy of up to 100% was achieved. The markers were putatively identified using their accurate masses and MS/MS fragmentation patterns from ASAP-QTOF. This approach was successfully transferred to the Radian ASAP MS, which is more deployable in the field. Overall, this study demonstrated the potential of ASAP-MS as a rapid fingerprinting tool for differentiating spring and autumn Tieguanyin.


Asunto(s)
Espectrometría de Masas en Tándem , Estaciones del Año , Análisis Discriminante , Análisis por Conglomerados
17.
Food Chem ; 403: 134340, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36166928

RESUMEN

Herein, a new indicator-displacement array (IDA) sensor was developed for the quality evaluation of black tea fermentation. On the principle of the reversible covalent binding of phenylboronic acid and catechol, phenylboronic acids were selected as acceptors for targeted binding to polyphenols. Pyrocatechol violet and alizarin red S were used as indicators of the reaction. The IDA sensors have sensitive differential responses to fermented tea samples, achieving an assessment of the fermentation degree with accuracies of 80.39-88.00% by support vector machine (SVM). In addition, the key polyphenol components of the fermentation process were accurately predicted by the IDA and SVM regression with ratio of prediction to deviation values of 1.55-1.72, 2.03-2.21, and 2.03-2.08 for total polyphenols, total catechins, and epigallocatechin-3-O-gallate, respectively. In conclusion, the developed IDA sensor is capable of the in-situ quality monitoring of black tea fermentation, with the advantages being cost-effectiveness, sensitivity, and rapidity.


Asunto(s)
Camellia sinensis , Catequina , , Polifenoles/análisis , Análisis Costo-Beneficio , Fermentación , Catequina/análisis
18.
Polymers (Basel) ; 15(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36904355

RESUMEN

Nanostructured cellulose (NC) represents an emerging sustainable biomaterial for diverse biotechnological applications; however, its production requires hazardous chemicals that render the process ecologically unfriendly. Using commercial plant-derived cellulose, an innovative strategy for NC production based on the combination of mechanical and enzymatic approaches was proposed as a sustainable alternative to conventional chemical procedures. After ball milling, the average length of the fibers was reduced by one order of magnitude (down to 10-20 µm) and the crystallinity index decreased from 0.54 to 0.07-0.18. Moreover, a 60 min ball milling pre-treatment followed by 3 h Cellic Ctec2 enzymatic hydrolysis led to NC production (15% yield). Analysis of the structural features of NC obtained by the mechano-enzymatic process revealed that the diameters of the obtained cellulose fibrils and particles were in the range of 200-500 nm and approximately 50 nm, respectively. Interestingly, the film-forming property on polyethylene (coating ≅ 2 µm thickness) was successfully demonstrated and a significant reduction (18%) of the oxygen transmission rate was obtained. Altogether, these findings demonstrated that nanostructured cellulose could be successfully produced using a novel, cheap, and rapid 2-step physico-enzymatic process that provides a potential green and sustainable route that could be exploitable in future biorefineries.

19.
Front Nutr ; 10: 1234807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645629

RESUMEN

Introduction: In recent years, scented black tea has attracted much attention due to its pleasant floral aroma and mellow flavor, but little research has been carried out on its flavor metabolic profile. Methods: In this study, the flavor metabolic profiles of unscented, Chloranthus spicatus scented, and Osmanthus fragrans (Thunb.) Lour. scented Congou black teas were investigated using full-spectrum metabolomics analysis method, the first time that the flavor profiles of scented black tea were characterized in detail. Results and Discussion: The results revealed that a total of 3,128 metabolites were detected in the three teas. Based on the criteria of variable importance in the project >1 and fold change ≥2 or ≤ 0.5, 761 non-volatile metabolites and 509 volatile metabolites were filtered as differential metabolites. Many differential non-volatile metabolites belonged to flavonoids, phenolic acids, and terpenoids. Floral, fruity and herbaceous volatile metabolites were significantly up-regulated in Chloranthus spicatus scented Congou black tea while sweet and fruity volatile metabolites were significantly down-regulated in Osmanthus fragrans (Thunb.) Lour. scented Congou black tea. The results contribute to a better understanding of the scenting techniques on the flavor quality of scented black teas and provide some information on the flavor chemistry theory of scented black teas.

20.
Food Chem ; 402: 134201, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36122474

RESUMEN

The effects of ß-glucosidase on the volatile profiles and aroma stability of black tea juice were evaluated using gas-chromatography-mass spectrometry coupled with sensory analysis. During liquid fermentation of tea leaves, the addition of ß-glucosidase increased the concentration of aldehydes, strengthening the undesirable "green grassy" odour. However, the "green grassy" odour was counteracted by adding green tea extract during fermentation. At the same time, "flowery" flavour notes were enhanced, improving the overall aroma quality and strengthening the characteristic "sweet" aroma of black tea. Increased addition of ß-glucosidase released more free aroma alcohols from their glucosides. Two "fruity" and "floral" aroma components, benzyl alcohol and phenylethyl alcohol, were not significantly affected by heat treatment (95 °C water bath) and the overall aroma stability was not significantly affected by ß-glucosidase treatment. ß-Glucosidase treatment improved the aroma, colour and overall suitability of fermented black tea juice as an ingredient for tea-based beverages.


Asunto(s)
Camellia sinensis , Alcohol Feniletílico , Compuestos Orgánicos Volátiles , Odorantes/análisis , Té/química , beta-Glucosidasa , Alcohol Feniletílico/análisis , Compuestos Orgánicos Volátiles/análisis , Camellia sinensis/química , Bebidas/análisis , Aldehídos/análisis , Extractos Vegetales , Glucósidos , Alcoholes Bencílicos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA