Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Genet Genomics ; 292(5): 1165-1174, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28634825

RESUMEN

As one of the most informative and versatile DNA-based markers, microsatellites have been widely used in population and conservation genetic studies. However, the development of microsatellites has traditionally been laborious, time-consuming, and expensive. In the present study, a rapid and cost-effective "RAD-seq-Assembly-Microsatellite" approach was developed to identify abundant microsatellite markers in non-model species using the roughskin sculpin Trachidermus fasciatus as a representative. Overlapping paired-end Illumina reads generated by restriction-site-associated DNA sequencing (RAD-seq) were clustered based on the similarity of reads containing the restriction enzyme recognition site and then assembled into contigs, which were used for microsatellite discovery and primer design. A total of 121,750 RAD contigs were generated with a mean length of 522 bp, and 19,782 contigs contained microsatellite motifs. A total of 156,150 primer pairs were successfully designed based on 16,497 contigs containing priming sites. Experimental validation of 52 randomly selected microsatellite loci demonstrated that 45 (86.54%) loci were successfully amplified and polymorphic in two geographically isolated populations of T. fasciatus. Compared with traditional approaches based on DNA cloning and other approaches based on next-generation sequencing, our newly developed approach could yield thousands of microsatellite loci with much higher successful amplification rate and lower costs, especially for non-model species with shallow background of genomic information. The "RAD-seq-Assembly-Microsatellite" approach holds great promise for microsatellite development in future ecological and evolutionary studies of non-model species.


Asunto(s)
Genética de Población/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Repeticiones de Microsatélite/genética , Perciformes/genética , Análisis de Secuencia de ADN/métodos , Animales , Cartilla de ADN/genética , Marcadores Genéticos/genética , Polimorfismo de Nucleótido Simple/genética
2.
iScience ; 27(8): 110563, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39165844

RESUMEN

The Japanese eel (Anguilla japonica), a flagship anguillid species for conservation, is known for its long-distance-oriented migration. However, our understanding of the genetic architecture underlying long-distance migration and population genomic characteristics of A. japonica is still limited. Here, we generated a high-quality chromosome-level genome assembly and conducted whole-genome resequencing of 218 individuals to explore these aspects. Strong signals of selection were found on genes involved in long-distance aerobic exercise and navigation, which might be associated with evolutionary adaptation to long-distance migrations. Low genetic diversity was detected, which might result from genetic drift associated with demographic declines. Both mitochondrial and nuclear genomic datasets supported the existence of a single panmictic population for Japanese eel, despite signals of single-generation selection. Candidate genes for local selection involved in functions like development and circadian rhythm. The findings can provide insights to adaptative evolution to long-distance migration and inform conservation efforts for A. japonica.

3.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-39320316

RESUMEN

Living in the intertidal environment, littorinid snails are excellent models for understanding genetic mechanisms underlying adaptation to harsh fluctuating environments. Furthermore, the karyotypes of littorinid snails, with the same chromosome number as the presumed bilaterian ancestor, make them valuable for investigating karyotype evolution from the bilaterian ancestor to mollusks. Here, we generated high-quality, chromosome-scale genome assemblies for 2 littorinid marine snails, Littorina brevicula (927.94 Mb) and Littoraria sinensis (882.51 Mb), with contig N50 of 3.43 Mb and 2.31 Mb, respectively. Comparative genomic analyses identified 92 expanded gene families and 85 positively selected genes as potential candidates possibly associated with intertidal adaptation in the littorinid lineage, which were functionally enriched in stimulus responses, innate immunity, and apoptosis process regulation and might be involved in cellular homeostasis maintenance in stressful intertidal environments. Genome macrosynteny analyses indicated that 4 fissions and 4 fusions led to the evolution from the 17 presumed bilaterian ancestral chromosomes to the 17 littorinid chromosomes, implying that the littorinid snails have a highly conserved karyotype with the bilaterian ancestor. Based on the most parsimonious reconstruction of the common ancestral karyotype of scallops and littorinid snails, 3 chromosomal fissions and 1 chromosomal fusion from the bilaterian ancient linkage groups were shared by the bivalve scallop and gastropoda littorinid snails, indicating that the chromosome-scale ancient gene linkages were generally preserved in the mollusk genomes for over 500 million years. The highly conserved karyotype makes the littorinid snail genomes valuable resources for understanding early bilaterian evolution and biology.


Asunto(s)
Cromosomas , Evolución Molecular , Cariotipo , Caracoles , Animales , Caracoles/genética , Caracoles/clasificación , Cromosomas/genética , Adaptación Fisiológica/genética , Genoma , Filogenia , Genómica/métodos , Evolución Biológica
4.
Mol Ecol Resour ; 22(5): 1892-1905, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35007382

RESUMEN

The cottids (Cottidae) are a taxonomically diverse and ecologically important component of many marine and freshwater ecosystems. Despite recent breakthroughs in long-read sequencing, high quality genomic resources are still limited for studies of ecological and evolutionary processes in cottids. Here, we generated a high-quality, chromosome-scale genome assembly (521.26 Mb) of the catadromous roughskin sculpin (Trachidermus fasciatus Heckel) with a contig N50 of 2.93 Mb and a scaffold N50 of 24.06 Mb. Approximately 21.97% of the genome was composed of repetitive elements. A total of 21,872 protein-coding genes were predicted, of which 19,900 genes (90.98%) were functionally annotated. Phylogenetic analysis supported the validity of Scorpaenoidei and Cottioidei as two suborders of the Perciformes. Chromosome-scale collinearity analyses identified four chromosome fusions leading to the reduction of chromosome number in T. fasciatus. Gene families related to cell apoptosis and cell death were expanded and those related to immune system were contracted, suggesting that these gene families might be relevant to a host of phenotypic differences between T. fasciatus and other teleosts. Gene families associated with osmoregulation were also expanded, which might be associated with its catadromous life history. A total of 50 aging-associated genes were found to be under positive selection, which might be associated with the short lifespan of T. fasciatus. The high-quality genome assembly and annotation will promote researches into the evolution of catadromous life history and short lifespan for T. fasciatus and facilitate comparative genomic studies of cottids in the near future.


Asunto(s)
Ecosistema , Perciformes , Animales , Cromosomas/genética , Genoma/genética , Perciformes/genética , Filogenia
5.
Genome Biol Evol ; 11(7): 1751-1764, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31173074

RESUMEN

Understanding the patterns of genetic diversity and adaptation across species' range is crucial to assess its long-term persistence and determine appropriate conservation measures. The impacts of human activities on the genetic diversity and genetic adaptation to heterogeneous environments remain poorly understood in the marine realm. The roughskin sculpin (Trachidermus fasciatus) is a small catadromous fish, and has been listed as a second-class state protected aquatic animal since 1988 in China. To elucidate the underlying mechanism of population genetic structuring and genetic adaptations to local environments, RAD tags were sequenced for 202 individuals in nine populations across the range of T. fasciatus in China. The pairwise FST values over 9,271 filtered SNPs were significant except that between Dongying and Weifang. All the genetic clustering analysis revealed significant population structure with high support for eight distinct genetic clusters. Both the minor allele frequency spectra and Ne estimations suggested extremely small Ne in some populations (e.g., Qinhuangdao, Rongcheng, Wendeng, and Qingdao), which might result from recent population bottleneck. The strong genetic structure can be partly attributed to genetic drift and habitat fragmentation, likely due to the anthropogenic activities. Annotations of candidate adaptive loci suggested that genes involved in metabolism, development, and osmoregulation were critical for adaptation to spatially heterogenous environment of local populations. In the context of anthropogenic activities and environmental change, results of the present population genomic work provided important contributions to the understanding of genetic differentiation and adaptation to changing environments.


Asunto(s)
Genética de Población/métodos , Metagenómica/métodos , Perciformes/genética , Animales , China , Ecosistema , Polimorfismo de Nucleótido Simple/genética
6.
PeerJ ; 7: e7242, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309001

RESUMEN

Exploring factors shaping genetic structure of marine fish is challenging due to fewer barriers to gene flow in the ocean. However, genome-wide sequence data can greatly enhance our ability to delineate previously unidentified population structure as well as potential adaptive divergence. The small yellow croaker (Larimichthys polyactis) is a commercially important fish species with high gene flow and its overwintering populations experience heterogeneous environment, suggesting possible population differentiation and adaptive divergence. To delineate patterns of population structure as well as test for signatures of local adaptation, a total of 68,666 quality filtered SNP markers were identified for 80 individuals from four overwintering populations by using restriction site-associated DNA sequencing (RAD-seq). Significant genetic differentiation among overwintering populations from the Central Yellow Sea, the South Yellow Sea and the North East China Sea were detected (Pair-wise F ST: 0.00036-0.00390), which were consistent with population division of overwintering groups inferred from traditional ecological approaches. In addition, a total of 126 unique SNPs were detected to be significantly associated with environmental parameters (temperature, salinity and turbidity). These candidate SNPs were involved in multiple pathways such as energy metabolism and phagocytosis, suggesting they may play key roles in growth and innate immunity. Our results suggested the existence of hitherto unrecognized cryptic population structure and local adaptation in this high gene flow marine fish and thus gain new insights into the design of management strategies.

7.
R Soc Open Sci ; 5(2): 171589, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29515871

RESUMEN

Restriction site-associated DNA (RAD) sequencing is revolutionizing studies in ecological, evolutionary and conservation genomics. However, the assembly of paired-end RAD reads with random-sheared ends is still challenging, especially for non-model species with high genetic variance. Here, we present an efficient optimized approach with a pipeline software, RADassembler, which makes full use of paired-end RAD reads with random-sheared ends from multiple individuals to assemble RAD contigs. RADassembler integrates the algorithms for choosing the optimal number of mismatches within and across individuals at the clustering stage, and then uses a two-step assembly approach at the assembly stage. RADassembler also uses data reduction and parallelization strategies to promote efficiency. Compared to other tools, both the assembly results based on simulation and real RAD datasets demonstrated that RADassembler could always assemble the appropriate number of contigs with high qualities, and more read pairs were properly mapped to the assembled contigs. This approach provides an optimal tool for dealing with the complexity in the assembly of paired-end RAD reads with random-sheared ends for non-model species in ecological, evolutionary and conservation studies. RADassembler is available at https://github.com/lyl8086/RADscripts.

8.
Sci Rep ; 6: 23461, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26996441

RESUMEN

Polyandry is a common mating strategy in animals, with potential for sexual selection to continue post-copulation through sperm competition and/or cryptic female choice. Few studies have investigated the influences of population density on polyandry and sperm usage, and paternity distribution in successive broods of marine invertebrates. The marine gastropod Rapana venosa is ideal for investigating how population density influences the frequency of polyandry and elucidating patterns of sperm usage. Two different population density (12 ind/m(3) and 36 ind/m(3)) treatments with two replications were set to observe reproductive behaviors. Five microsatellite markers were used to identify the frequency of multiple paternity and determine paternal contributions to progeny arrays in 120 egg masses. All of the mean mating frequency, mean number of sires and mean egg-laying frequency were higher at high population density treatment relative to low population density treatment, indicating population density is an important factor affecting polyandry. The last sperm donors achieved high proportions of paternity in 74.77% of egg masses, which supported the "last male sperm precedence" hypothesis. In addition, high variance in reproductive success among R. venosa males were detected, which might have an important influence on effective population size.


Asunto(s)
Gastrópodos/fisiología , Preferencia en el Apareamiento Animal , Espermatozoides/fisiología , Animales , Femenino , Gastrópodos/genética , Masculino , Repeticiones de Microsatélite , Densidad de Población , Reproducción
9.
G3 (Bethesda) ; 6(7): 2181-93, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27194808

RESUMEN

During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.


Asunto(s)
Gastrópodos/genética , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Larva/genética , Transcriptoma , Animales , Apoptosis , Sistema Digestivo/crecimiento & desarrollo , Sistema Digestivo/metabolismo , Gastrópodos/crecimiento & desarrollo , Perfilación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Sistema Inmunológico/crecimiento & desarrollo , Sistema Inmunológico/metabolismo , Larva/crecimiento & desarrollo , Anotación de Secuencia Molecular , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Mariscos
10.
Mol Ecol Resour ; 16(3): 755-68, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26439680

RESUMEN

Recent advances in high-throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction-site-associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long-term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST -based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.


Asunto(s)
Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Perciformes/genética , Polimorfismo de Nucleótido Simple , Adaptación Biológica , Animales , Genética de Población
11.
PLoS One ; 11(6): e0157809, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27336696

RESUMEN

Next-generation sequencing and the collection of genome-wide single-nucleotide polymorphisms (SNPs) allow identifying fine-scale population genetic structure and genomic regions under selection. The spotted sea bass (Lateolabrax maculatus) is a non-model species of ecological and commercial importance and widely distributed in northwestern Pacific. A total of 22 648 SNPs was discovered across the genome of L. maculatus by paired-end sequencing of restriction-site associated DNA (RAD-PE) for 30 individuals from two populations. The nucleotide diversity (π) for each population was 0.0028±0.0001 in Dandong and 0.0018±0.0001 in Beihai, respectively. Shallow but significant genetic differentiation was detected between the two populations analyzed by using both the whole data set (FST = 0.0550, P < 0.001) and the putatively neutral SNPs (FST = 0.0347, P < 0.001). However, the two populations were highly differentiated based on the putatively adaptive SNPs (FST = 0.6929, P < 0.001). Moreover, a total of 356 SNPs representing 298 unique loci were detected as outliers putatively under divergent selection by FST-based outlier tests as implemented in BAYESCAN and LOSITAN. Functional annotation of the contigs containing putatively adaptive SNPs yielded hits for 22 of 55 (40%) significant BLASTX matches. Candidate genes for local selection constituted a wide array of functions, including binding, catalytic and metabolic activities, etc. The analyses with the SNPs developed in the present study highlighted the importance of genome-wide genetic variation for inference of population structure and local adaptation in L. maculatus.


Asunto(s)
Lubina/genética , Variación Genética , Genética de Población , Estudio de Asociación del Genoma Completo , Genotipo , Polimorfismo de Nucleótido Simple , Animales , Análisis por Conglomerados , Biología Computacional/métodos , Ontología de Genes , Anotación de Secuencia Molecular
12.
PLoS One ; 11(4): e0154020, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27100462

RESUMEN

The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis) were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2). Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource.


Asunto(s)
Adaptación Fisiológica/fisiología , Flujo Génico , Biología Marina , Perciformes/genética , Animales , Repeticiones de Microsatélite/genética , Perciformes/fisiología
13.
PLoS One ; 9(5): e95436, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24789175

RESUMEN

The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure). Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI) gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene) and current gene flow (through larval dispersal) were responsible for the weak level of genetic structure detected in A. pectinata.


Asunto(s)
Bivalvos/genética , ADN Mitocondrial , Genética de Población , Repeticiones de Microsatélite , Alelos , Animales , Análisis por Conglomerados , Ecosistema , Evolución Molecular , Flujo Genético , Variación Genética , Geografía , Haplotipos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA