Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 49(3): 550-553, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300056

RESUMEN

Femtosecond laser filament-induced plasma spectroscopy (FIPS) demonstrates great potential in remote sensing for identifying atmospheric pollutant molecules. Due to the widespread aerosols in the atmosphere, remote detection based on FIPS would be affected by both the excitation and the propagation of fingerprint fluorescence, which still remain elusive. Here the physical model of filament-induced aerosol fluorescence is established to reveal the combined effect of Mie scattering and amplification spontaneous emission, which is subsequently proven by experimental results, the dependence of the backward fluorescence on the interaction length between filaments and aerosols. These findings provide an insight into the complicated aerosol effect in the overall physical process of FIPS including propagation, excitation, and emission, paving the way to its practical application in atmospheric remote sensing.

2.
Opt Express ; 31(17): 28586-28595, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710909

RESUMEN

In this work, sub-ppb aerosol detection is achieved by femtosecond laser filament with a single pulse energy of 4 mJ at a distance of 30 m. A concave mirror with an open aperture of 41.4 cm is employed in an off-axis optical system to focus the femtosecond laser beam and collect the fluorescence of NaCl aerosol. The simulation and experimental results show that the astigmatism can be greatly reduced when femtosecond laser beam is incident non-symmetrically on the concave mirror. Compared with the case that femtosecond laser strikes at the center of the concave mirror, the intensity of acoustic signal emitted from the optical filament is increased by 69.5 times, and the detection of limit of sodium element in aerosol is reduced by 86%, which is down to 0.32 ppb. The improved excitation scheme in this work utilizes the nonsymmetrical beam spot on the concave mirror to compensate the non-symmetry induced by the off-axis setup, reducing the astigmatism of the focusing laser beam and decreasing the sodium chloride aerosol's detection of limit.

3.
Opt Express ; 30(21): 38745-38752, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258432

RESUMEN

Femtosecond laser filamentation propagating tens of meters to several kilometers with high intensity in the atmosphere has been demonstrated as a powerful tool for remote sensing. In contrast to the refractive systems, the reflective optical systems possess a variety of advantages including broad bandwidth, large aperture, light weight and low energy loss. However, astigmatic aberration is inevitably introduced by off-axis reflective mirrors. It can greatly affect the filament quality, which is critical for exciting and detecting the fluorescence of target molecules. Here we elaborately design a free-form phase plate to correct the astigmatism in off-axis reflective optical systems. It is demonstrated that the free-form surface exhibits excellent performance, significantly reducing the astigmatic difference from 44 cm to 4 cm and increasing the maximum acoustic intensity by a factor of 53. In addition, extremely strong nitrogen fluorescence spectra have been detected. These results indicate that the free-form phase plate can effectively compensate for astigmatic aberration in off-axis reflective system, providing a guiding significance for the optimal control of filamentation and remote sensing.

4.
Opt Lett ; 47(21): 5676-5679, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219301

RESUMEN

In this paper, the effect of the laser repetition rate on the long-distance femtosecond laser filament in air is investigated by measuring the fluorescence characteristic of the filament. A femtosecond laser filament emits fluorescence due to the thermodynamical relaxation of the plasma channel. Experimental results show that as the repetition rate of femtosecond laser increases, the fluorescence of the filament induced by a single laser pulse weakens, and the position of the filament moves away from the focusing lens. These phenomena may be attributed to the slow hydrodynamical recovery process of air after being excited by a femtosecond laser filament, whose characteristic time is on the millisecond time scale and comparable to the inter-pulse duration of the femtosecond laser pulse train. This finding suggests that at a high laser repetition rate, to generate an intense laser filament, the femtosecond laser beam should scan across the air to eliminate the adverse effect of slow air relaxation, which is beneficial to laser filament remote sensing.

5.
Sensors (Basel) ; 22(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36146330

RESUMEN

Ultra-short laser filamentation has been intensively studied due to its unique optical properties for applications in the field of remote sensing and detection. Although significant progress has been made, the quality of the laser beam still suffers from various optical aberrations during long-range transmission. Astigmatism is a typical off-axis aberration that is often encountered in the off-axis optical systems. An effective method needs to be proposed to suppress the astigmatism of the beam during filamentation. Herein, we numerically investigated the impact of the nonlinear effects on the focusing properties of the astigmatic Gaussian beams in air and obtained similar results in the experiment. As the single pulse energy increases, the maximum on-axis intensity gradually shifted from the sagittal focus to the tangential focus and the foci moved forward simultaneously. Moreover, the astigmatism could be suppressed effectively with the enhancement of the nonlinear effects, that is, the astigmatic difference and the degree of beam distortion were both reduced. Through this approach, the acoustic intensity of the filament (located at the tangential focal point) increased by a factor of 22.8. Our work paves a solid step toward the practical applications of the astigmatism beam as the nonlinear lidar.

6.
Sensors (Basel) ; 22(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36146424

RESUMEN

Femtosecond laser filamentation is a unique nonlinear optical phenomenon when high-power ultrafast laser propagation in all transparent optical media. During filamentation in the atmosphere, the ultrastrong field of 1013-1014 W/cm2 with a large distance ranging from meter to kilometers can effectively ionize, break, and excite the molecules and fragments, resulting in characteristic fingerprint emissions, which provide a great opportunity for investigating strong-field molecules interaction in complicated environments, especially remote sensing. Additionally, the ultrastrong intensity inside the filament can damage almost all the detectors and ignite various intricate higher order nonlinear optical effects. These extreme physical conditions and complicated phenomena make the sensing and controlling of filamentation challenging. This paper mainly focuses on recent research advances in sensing with femtosecond laser filamentation, including fundamental physics, sensing and manipulating methods, typical filament-based sensing techniques and application scenarios, opportunities, and challenges toward the filament-based remote sensing under different complicated conditions.

7.
Mol Biol Rep ; 47(3): 2197-2203, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32078092

RESUMEN

Stephania is a medicinal plants-rich genus of Menispermaceae. However, the identification of morphologically-similar species in Stephania is difficult using the currently reported methods. The indiscriminate overexploitation of Stephania plants has resulted in clinical misuse and endangerment of many species, which necessitates the development of an efficient and reliable method for species authentication. Therefore, six candidate DNA barcode sequences (ITS, ITS2, psbA-trnH, matK, rbcL, and trnL-F) were tested for their capacity to identify Stephania species. The barcodes were analyzed either as a single region or in combination by tree-based [neighbor-joining (NJ) and Bayesian inference (BI)], distance-based (PWG-distance), and sequence similarity-based (TaxonDNA) methods. Amplification and sequencing success rates were 100% for all six candidate barcodes. A comparison of six barcode regions showed that ITS exhibited the highest number of variable and informative sites (182/179), followed by psbA-trnH (173/162). DNA barcoding gap assessment showed that interspecific distances of the six barcodes were greater than intraspecific distances. The identification results showed that species discrimination rates of combination barcodes were higher than those of single-region barcodes. Based on best match and best close match methods, the ITS+psbA-trnH combination exhibited the highest discrimination power (93.93%). Further, all Stephania species could be resolved in the phylogenetic trees based on ITS+psbA-trnH (NJ, BI). This study demonstrates that DNA barcoding is an efficient method to identify Stephania species and recommends that the ITS+psbA-trnH combination is the best DNA barcode for the identification of Stephania species.


Asunto(s)
Código de Barras del ADN Taxonómico , Stephania/clasificación , Stephania/genética , Biología Computacional/métodos , ADN de Plantas , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
8.
J Pharm Biomed Anal ; 226: 115247, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36657347

RESUMEN

LC-MS has been a widely used analytical technique for identification of natural compounds. However, sophisticated and laborious data analysis is required to identify chemical components, especially new compounds, from a large LC-MS dataset. The aim of this study is to develop an integrated data-mining strategy that combines molecular networking (MN), in-house polygonal mass defect filtering (MDF), and diagnostic fragment ion filtering (DFIF) to identify phytochemicals in Stephania tetrandra based on LC-MS data. S. tetrandra samples were prepared by matrix solid-phase dispersion extraction methods and then raw MS spectra were acquired using LC-QTOF-MS/MS. MN and in-house polygonal MDF classified the compounds roughly. Modified DFIF were then used in succession to place each spectrum into a specific class. Finally, the exact structures were deduced by fragmentation pathways and related botanical biogenesis, with the help of the narrowed classification from MN and MDF. The total workflow was a combination of data filtering and identification methods for rapid characterization of known compounds (dereplication) and discovery of new compounds. Consequently, 144 compounds were identified or tentatively identified in the aerial parts and roots of S. tetrandra, including 11 potentially new compounds and 63 compounds first identified in this species. Among 144 compounds, 61 were from the aerial parts exclusively, 8 were from the roots exclusively, and 75 were found in both parts. Furthermore, two new biflavonoids were isolated with the guide of LC-MS analysis and structurally elucidated by spectroscopic methods. In conclusion, the proposed data-mining strategy based on LC-MS can be used to profile chemical constituents with high efficiency and guide the isolation of new compounds from medicinal plants. The comparison of the components of the aerial parts and roots of S. tetrandra would be helpful for the rational utilization of the medicinal plant.


Asunto(s)
Biflavonoides , Plantas Medicinales , Stephania tetrandra , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Plantas Medicinales/química , Cromatografía Líquida de Alta Presión
9.
Bioresour Technol ; 255: 180-188, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29414165

RESUMEN

In this study, effects of oxygen supply and shear stress on nemadectin production by Streptomyces cyaneogriseus ssp. noncyanogenus (S. cyaneogriseus) fermentation were investigated in shake flasks and 5-L bioreactors. Results showed sufficient dissolved oxygen level was essential for cells growth and nemadectin biosynthesis, while strong shear stress had negative impacts on both cell growth and nemadectin synthesis. Furthermore, when a combined paddle type was applied in culturing S. cyaneogriseus, the nemadectin production was increased by 23.6%. The influence of different agitation rates and paddle types on volumetric oxygen transfers coefficient (KLa) and shear stress were quantitatively studied through computational fluid dynamics simulation (CFD). The results of CFD revealed that high KLa as well as low shear stress co-existed under the combined impeller configuration at 650rpm. This study is expected to be helpful to the scale-up of nemadectin fermentation and other stress-sensitive but high-oxygen-consumption filamentous microorganism.


Asunto(s)
Reactores Biológicos , Macrólidos , Streptomyces , Fermentación , Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA