Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Plant Cell Environ ; 46(11): 3628-3643, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37485926

RESUMEN

The developmental process of spike is critical for spike fertility through affecting floret primordia fate in wheat; however, the genetic regulation of this dynamic and complex developmental process remains unclear. Here, we conducted a high temporal-resolution analysis of spike transcriptomes and monitored the number and morphology of floret primordia within spike. The development of all floret primordia in a spike was clearly separated into three distinct phases: differentiation, pre-dimorphism and dimorphism. Notably, we identified that floret primordia with meiosis ability at the pre-dimorphism phase usually develop into fertile floret primordia in the next dimorphism phase. Compared to control, increasing plant space treatment achieved the maximum increasement range (i.e., 50%) in number of fertile florets by accelerating spike development. The process of spike fertility improvement was directed by a continuous and dynamic regulatory network involved in transcription factor and genes interaction. This was based on the coordination of genes related to heat shock protein and jasmonic acid biosynthesis during differentiation phase, and genes related to lignin, anthocyanin and chlorophyll biosynthesis during dimorphism phase. The multi-dimensional association with high temporal-resolution approach reported here allows rapid identification of genetic resource for future breeding studies to realise the maximum spike fertility potential in more cereal crops.


Asunto(s)
Flores , Triticum , Flores/fisiología , Redes Reguladoras de Genes , Grano Comestible/genética , Fertilidad/genética
2.
Mol Breed ; 42(4): 18, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37309459

RESUMEN

Using imbalanced historical yield data to predict performance and select new lines is an arduous breeding task. Genome-wide association studies (GWAS) and high throughput genotyping based on sequencing techniques can increase prediction accuracy. An association mapping panel of 227 Texas elite (TXE) wheat breeding lines was used for GWAS and a training population to develop prediction models for grain yield selection. An imbalanced set of yield data collected from 102 environments (year-by-location) over 10 years, through testing yield in 40-66 lines each year at 6-14 locations with 38-41 lines repeated in the test in any two consecutive years, was used. Based on correlations among data from different environments within two adjacent years and heritability estimated in each environment, yield data from 87 environments were selected and assigned to two correlation-based groups. The yield best linear unbiased estimation (BLUE) from each group, along with reaction to greenbug and Hessian fly in each line, was used for GWAS to reveal genomic regions associated with yield and insect resistance. A total of 74 genomic regions were associated with grain yield and two of them were commonly detected in both correlation-based groups. Greenbug resistance in TXE lines was mainly controlled by Gb3 on chromosome 7DL in addition to two novel regions on 3DL and 6DS, and Hessian fly resistance was conferred by the region on 1AS. Genomic prediction models developed in two correlation-based groups were validated using a set of 105 new advanced breeding lines and the model from correlation-based group G2 was more reliable for prediction. This research not only identified genomic regions associated with yield and insect resistance but also established the method of using historical imbalanced breeding data to develop a genomic prediction model for crop improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01287-8.

3.
Planta ; 254(4): 63, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34477992

RESUMEN

MAIN CONCLUSION: The expression of stay-green (SG) characteristic in sorghum under water stress was related to N supply. SG genotype performed better than a non-stay-green (NSG) genotype at medium and high N levels. The differences in physiological parameters between SG and NSG genotypes were not significant at low N level and severe water stress. Grain sorghum [Sorghum bicolor (L.) Moench] with stay-green (SG) trait has the potential to produce more biomass and use soil water and nitrogen (N) more efficiently under post-flowering water stress. Previous studies were mostly conducted without N deficiency and more information is needed for interactions among soil N availability, SG genotype, and post-flowering water stress. In this study, the differences in leaf growth and senescence, shoot and root biomass, evapotranspiration (ET), water use efficiency (WUE), leaf photosynthetic responses, and nitrogen use efficiency (NUE) between a SG genotype (BTx642) and a non-stay-green (NSG) genotype (Tx7000) were examined. The two genotypes were grown at three N levels (Low, LN; Medium, MN; High, HN) and under three post-flowering water regimes (No water deficit, ND; Moderate water deficit, MD; Severe water deficit, SD). The genotypic difference was generally significant while it frequently interacted with N levels and water regimes. At medium and high N levels, SG genotype consistently had greater green leaf area, slower senescence rate, more shoot biomass and root biomass, and greater WUE and NUE than the NSG genotype under post-flowering drought. However, differences in several variables (e.g., leaf senescence, ET, WUE and NUE) between genotypes were not significant under SD at LN. At HN and MN, photosynthetic function of SG genotype was better maintained under drought. At LN, SG genotype maintained greater green leaf area but had lower photosynthetic activity than the NSG genotype. Nonetheless, adequate N supply is important for SG genotype under drought and greater root biomass may contribute to greater NUE in SG genotype.


Asunto(s)
Sorghum , Sequías , Grano Comestible , Nitrógeno , Sorghum/genética , Agua
4.
Theor Appl Genet ; 130(9): 1867-1884, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28624908

RESUMEN

KEY MESSAGE: Greenbug and Hessian fly are important pests that decrease wheat production worldwide. We developed and validated breeder-friendly KASP markers for marker-assisted breeding to increase selection efficiency. Greenbug (Schizaphis graminum Rondani) and Hessian fly [Mayetiola destructor (Say)] are two major destructive insect pests of wheat (Triticum aestivum L.) throughout wheat production regions in the USA and worldwide. Greenbug and Hessian fly infestation can significantly reduce grain yield and quality. Breeding for resistance to these two pests using marker-assisted selection (MAS) is the most economical strategy to minimize losses. In this study, doubled haploid lines from the Synthetic W7984 × Opata M85 wheat reference population were used to construct linkage maps for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 with genotyping-by-sequencing (GBS) and 90K array-based single nucleotide polymorphism (SNP) marker data. Flanking markers were closely linked to Gb7 and H32 and were located on chromosome 7DL and 3DL, respectively. Gb7-linked markers (synopGBS773 and synopGBS1141) and H32-linked markers (synopGBS901 and IWB65911) were converted into Kompetitive Allele Specific PCR (KASP) assays for MAS in wheat breeding. In addition, comparative mapping identified syntenic regions in Brachypodium distachyon, rice (Oryza sativa), and sorghum (Sorghum bicolor) for Gb7 and H32 that can be used for fine mapping and map-based cloning of the genes. The KASP markers developed in this study are the first set of SNPs tightly linked to Gb7 and H32 and will be very useful for MAS in wheat breeding programs and future genetic studies of greenbug and Hessian fly resistance.


Asunto(s)
Áfidos , Dípteros , Marcadores Genéticos , Triticum/genética , Animales , Brachypodium/genética , Mapeo Cromosómico , Ligamiento Genético , Herbivoria , Oryza/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Sorghum/genética , Sintenía
5.
Phytopathology ; 105(5): 621-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25901871

RESUMEN

Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect of WSMV, inoculated at different development stages, on shoot and root growth, water use, water use efficiency (WUE), and photosynthesis and (ii) understand the relationships between yield and photosynthetic parameters during WSMV infection. Two greenhouse experiments were conducted with two wheat cultivars mechanically inoculated with WSMV at different developmental stages, from three-leaf to booting. WSMV inoculated early, at three- to five-leaf stage, resulted in a significant reduction in shoot biomass, root dry weight, and yield compared with wheat infected at the jointing and booting stages. However, even when inoculated as late as jointing, WSMV still reduced grain yield by at least 53%. Reduced tillers, shoot biomass, root dry weight, water use, and WUE contributed to yield loss under WSMV infection. However, infection by WSMV did not affect rooting depth and the number of seminal roots but reduced the number of nodal roots. Leaf photosynthetic parameters (chlorophyll [SPAD], net photosynthetic rate [Pn], stomatal conductance [Gs], intercellular CO2 concentration [Ci], and transpiration rate [Tr]) were reduced when infected by WSMV, and early infection reduced parameters more than late infection. Photosynthetic parameters had a linear relationship with grain yield and shoot biomass. The reduced Pn under WSMV infection was mainly in response to decreased Gs, Ci, and SPAD. The results of this study indicated that leaf chlorophyll and gas exchange parameters can be used to quantify WSMV effects on biomass and grain yield in wheat.


Asunto(s)
Enfermedades de las Plantas/virología , Potyviridae/fisiología , Triticum/fisiología , Biomasa , Clorofila/metabolismo , Grano Comestible/crecimiento & desarrollo , Grano Comestible/fisiología , Grano Comestible/virología , Fotosíntesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/virología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Raíces de Plantas/virología , Transpiración de Plantas/fisiología , Estaciones del Año , Triticum/crecimiento & desarrollo , Triticum/virología , Agua/fisiología
6.
Water Sci Technol ; 68(4): 821-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23985512

RESUMEN

The objective of this study was to evaluate the performance of the FAO-AquaCrop model in winter wheat in the southern Loess Plateau of China. Multi-year field experimental data from 2004 and 2011 were used to calibrate and validate the model for simulating biomass, canopy cover (CC), soil water content, and grain yield under rainfed conditions. The model performance was evaluated using root mean square error (RMSE) and Willmott index of agreement (d) as criteria. The RMSE ranged from 0.16 to 0.38 t/ha for simulating aboveground biomass, 1.87 to 4.15% for CC, 0.50 to 1.44 t/ha for grain yield, and 5.70 to 22.56 mm for soil water content. The d ranged from 0.22 to 0.89, 0.25 to 0.43, 0.36 to 0.62 and 0.95 to 0.98 for aboveground biomass, CC, soil water content and grain yield, respectively. Generally, the model performed better for simulating CC and yield than biomass and soil water content. The results further indicated that AquaCrop is capable of simulating winter wheat yield under rainfed conditions. Further improvement may be needed to capture the variation of different management practices such as fertility and irrigation levels in this region.


Asunto(s)
Simulación por Computador , Modelos Teóricos , Triticum/crecimiento & desarrollo , Agua , Biomasa , China , Fenómenos Geológicos , Reproducibilidad de los Resultados , Suelo/química , Factores de Tiempo
7.
Plants (Basel) ; 12(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36771612

RESUMEN

Proteomic analysis was performed to investigate the differentially abundant proteins (DAPs) in barley roots during the tillering stage. Bioinformatic tools were used to interpret the biological function, the pathway analysis and the visualisation of the network amongst the identified proteins. A total of 72 DAPs (33 upregulated and 39 downregulated) among a total of 2580 proteins were identified in response to compost treatment, suggesting multiple pathways of primary and secondary metabolism, such as carbohydrates and energy metabolism, phenylpropanoid pathway, glycolysis pathway, protein synthesis and degradation, redox homeostasis, RNA processing, stress response, cytoskeleton organisation, and phytohormone metabolic pathways. The expression of DAPs was further validated by qRT-PCR. The effects on barley plant development, such as the promotion of root growth and biomass increase, were associated with a change in energy metabolism and protein synthesis. The activation of enzymes involved in redox homeostasis and the regulation of stress response proteins suggest a protective effect of compost, consequently improving barley growth and stress acclimation through the reduction of the environmental impact of productive agriculture. Overall, these results may facilitate a better understanding of the molecular mechanism of compost-promoted plant growth and provide valuable information for the identification of critical genes/proteins in barley as potential targets of compost.

8.
Biology (Basel) ; 12(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37106747

RESUMEN

Application of date palm waste compost is quite beneficial in improving soil properties and crop growth. However, the effect of its application on soil microbial communities is less understood. High-throughput sequencing and quantitative real-time PCR (qPCR) were used to evaluate the effect of compost application on the soil microbial composition in a barley field during the tillering, booting and ripening stages. The results showed that compost treatment had the highest bacterial and fungal abundance, and its application significantly altered the richness (Chao1 index) and α-diversity (Shannon index) of fungal and bacterial communities. The dominant bacterial phyla found in the samples were Proteobacteria and Actinobacteria while the dominant fungal orders were Ascomycota and Mortierellomycota. Interestingly, compost enriched the relative abundance of beneficial microorganisms such as Chaetomium, Actinobacteriota, Talaromyces and Mortierella and reduced those of harmful microorganisms such as Alternaria, Aspergillus and Neocosmospora. Functional prediction based on Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that amplicon sequence variant (ASV) sequences related to energy metabolism, amino acid metabolism and carbohydrate metabolism were associated with compost-treated soil. Based on Fungi Functional Guild (FUNGuild), identified fungi community metabolic functions such as wood saprotroph, pathotroph, symbiotroph and endophyte were associated with compost-treated soil. Overall, compost addition could be considered as a sustainable practice for establishing a healthy soil microbiome and subsequently improving the soil quality and barley crop production.

9.
Front Plant Sci ; 13: 1057701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570880

RESUMEN

In the Southern Great Plains, wheat cultivars have been selected for a combination of outstanding yield and drought tolerance as a long-term breeding goal. To understand the underlying genetic mechanisms, this study aimed to dissect the quantitative trait loci (QTL) associated with yield components and kernel traits in two wheat cultivars `TAM 112' and `Duster' under both irrigated and dryland environments. A set of 182 recombined inbred lines (RIL) derived from the cross of TAM 112/Duster were planted in 13 diverse environments for evaluation of 18 yield and kernel related traits. High-density genetic linkage map was constructed using 5,081 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS). QTL mapping analysis detected 134 QTL regions on all 21 wheat chromosomes, including 30 pleiotropic QTL regions and 21 consistent QTL regions, with 10 QTL regions in common. Three major pleiotropic QTL on the short arms of chromosomes 2B (57.5 - 61.6 Mbps), 2D (37.1 - 38.7 Mbps), and 7D (66.0 - 69.2 Mbps) colocalized with genes Ppd-B1, Ppd-D1, and FT-D1, respectively. And four consistent QTL associated with kernel length (KLEN), thousand kernel weight (TKW), plot grain yield (YLD), and kernel spike-1 (KPS) (Qklen.tamu.1A.325, Qtkw.tamu.2B.137, Qyld.tamu.2D.3, and Qkps.tamu.6A.113) explained more than 5% of the phenotypic variation. QTL Qklen.tamu.1A.325 is a novel QTL with consistent effects under all tested environments. Marker haplotype analysis indicated the QTL combinations significantly increased yield and kernel traits. QTL and the linked markers identified in this study will facilitate future marker-assisted selection (MAS) for pyramiding the favorable alleles and QTL map-based cloning.

10.
Crop Sci ; 61(4): 2745-2758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413536

RESUMEN

Xinjiang is currently the most dominant cotton (Gossypium hirsutum L.)-growing region in China and possesses abundant radiation resource. The cultivation techniques such as wide and narrow row-spacing and high density are widely adopted to obtain high cotton yield in the region. However, the region is facing some problems including poor light transmittance in the field and low exploitation for light resources under the current planting pattern which impedes further growth in cotton yields. Therefore, it is essential to develop some cultivation practices to increase radiation use efficiency (RUE) and cotton yields in Xinjiang. Here we conducted a field experiment to quantify the effects of row spacing pattern and plant density on RUE, intercepted photosynthetically active radiation from May to August (IRAR5-8), and lint yield during 2017 and 2018. In this study, we designed two row-spacing configurations (R1, wide and narrow configuration, 66 cm + 10 cm; R2, uniform row-spacing configuration, 76 cm) and six plant densities (4.5, 9.0, 13.5, 18.0, 22.5, and 27.0 plants m-2). The RUE, lint yield, and number of bolls were higher in R2 than R1 by 4.1-5.9, 2.5-4.8, and 9.1-14.2%, respectively. The RUE significantly increased with plant density, but lint yield stabilized at 18.0 plants m-2. Moreover, RUE had more significant positive effects on boll number and lint yield. Overall, we found that R2 combined with optimal plant densities (13.5-18.0 plants m-2) would be an effective strategy to achieve higher RUE and yields in the Xinjiang cotton system.

11.
Sci Rep ; 11(1): 4301, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619336

RESUMEN

Wheat cultivars 'TAM 111' and 'TAM 112' have been dominantly grown in the Southern U.S. Great Plains for many years due to their high yield and drought tolerance. To identify the molecular basis and genetic control of drought tolerance in these two landmark cultivars, RNA-seq analysis was conducted to compare gene expression difference in flag leaves under fully irrigated (wet) and water deficient (dry) conditions. A total of 2254 genes showed significantly altered expression patterns under dry and wet conditions in the two cultivars. TAM 111 had 593 and 1532 dry-wet differentially expressed genes (DEGs), and TAM 112 had 777 and 1670 at heading and grain-filling stages, respectively. The two cultivars have 1214 (53.9%) dry-wet DEGs in common, which agreed with their excellent adaption to drought, but 438 and 602 dry-wet DEGs were respectively shown only in TAM 111 and TAM 112 suggested that each has a specific mechanism to cope with drought. Annotations of all 2254 genes showed 1855 have functions related to biosynthesis, stress responses, defense responses, transcription factors and cellular components related to ion or protein transportation and signal transduction. Comparing hierarchical structure of biological processes, molecule functions and cellular components revealed the significant regulation differences between TAM 111 and TAM 112, particularly for genes of phosphorylation and adenyl ribonucleotide binding, and proteins located in nucleus and plasma membrane. TAM 112 showed more active than TAM 111 in response to drought and carried more specific genes with most of them were up-regulated in responses to stresses of water deprivation, heat and oxidative, ABA-induced signal pathway and transcription regulation. In addition, 258 genes encoding predicted uncharacterized proteins and 141 unannotated genes with no similar sequences identified in the databases may represent novel genes related to drought response in TAM 111 or TAM 112. This research thus revealed different drought-tolerance mechanisms in TAM 111 and TAM 112 and identified useful drought tolerance genes for wheat adaption. Data of gene sequence and expression regulation from this study also provided useful information of annotating novel genes associated with drought tolerance in the wheat genome.


Asunto(s)
Adaptación Fisiológica/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Transcriptoma , Triticum/fisiología , Biología Computacional/métodos , Curaduría de Datos , Perfilación de la Expresión Génica , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Carácter Cuantitativo Heredable , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
12.
PeerJ ; 9: e12350, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900409

RESUMEN

Quantitative trait loci (QTL) analysis could help to identify suitable molecular markers for marker-assisted breeding (MAB). A mapping population of 124 F5:7recombinant inbred lines derived from the cross 'TAM 112'/'TAM 111' was grown under 28 diverse environments and evaluated for grain yield, test weight, heading date, and plant height. The objective of this study was to detect QTL conferring grain yield and agronomic traits from multiple mega-environments. Through a linkage map with 5,948 single nucleotide polymorphisms (SNPs), 51 QTL were consistently identified in two or more environments or analyses. Ten QTL linked to two or more traits were also identified on chromosomes 1A, 1D, 4B, 4D, 6A, 7B, and 7D. Those QTL explained up to 13.3% of additive phenotypic variations with the additive logarithm of odds (LOD(A)) scores up to 11.2. The additive effect increased yield up to 8.16 and 6.57 g m-2 and increased test weight by 2.14 and 3.47 kg m-3 with favorable alleles from TAM 111 and TAM 112, respectively. Seven major QTL for yield and six for TW with one in common were of our interest on MAB as they explained 5% or more phenotypic variations through additive effects. This study confirmed previously identified loci and identified new QTL and the favorable alleles for improving grain yield and agronomic traits.

13.
PLoS One ; 15(12): e0237293, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33264303

RESUMEN

Two drought-tolerant wheat cultivars, 'TAM 111' and 'TAM 112', have been widely grown in the Southern Great Plains of the U.S. and used as parents in many wheat breeding programs worldwide. This study aimed to reveal genetic control of yield and yield components in the two cultivars under both dryland and irrigated conditions. A mapping population containing 124 F5:7 recombinant inbred lines (RILs) was developed from the cross of TAM 112/TAM 111. A set of 5,948 SNPs from the wheat 90K iSelect array and double digest restriction-site associated DNA sequencing was used to construct high-density genetic maps. Data for yield and yield components were obtained from 11 environments. QTL analyses were performed based on 11 individual environments, across all environments, within and across mega-environments. Thirty-six unique consistent QTL regions were distributed on 13 chromosomes including 1A, 1B, 1D, 2A, 2D, 3D, 4B, 4D, 6A, 6B, 6D, 7B, and 7D. Ten unique QTL with pleiotropic effects were identified on four chromosomes and eight were in common with the consistent QTL. These QTL increased dry biomass grain yield by 16.3 g m-2, plot yield by 28.1 g m-2, kernels spike-1 by 0.7, spikes m-2 by 14.8, thousand kernel weight by 0.9 g with favorable alleles from either parent. TAM 112 alleles mainly increased spikes m-2 and thousand kernel weight while TMA 111 alleles increased kernels spike-1, harvest index and grain yield. The saturated genetic map and markers linked to significant QTL from this study will be very useful in developing high throughput genotyping markers for tracking the desirable haplotypes of these important yield-related traits in popular parental cultivars.


Asunto(s)
Interacción Gen-Ambiente , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/genética , Riego Agrícola , Alelos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Estudios de Asociación Genética , Ligamiento Genético , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos/genética , Tamaño de los Órganos , Fitomejoramiento , Carácter Cuantitativo Heredable , Semillas , Triticum/fisiología
14.
PLoS One ; 12(3): e0173511, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28264051

RESUMEN

Cultivar selection, planting geometry, and plant population are the key factors determining grain sorghum yields in water deficit areas. The objective of this study was to investigate whether clump geometry (three plants clustered) improves microclimate within crop canopy when plants are grown under varying water levels. In a 2-yr sorghum (Sorghum bicolor L. Moench) greenhouse study, plants were grown at two geometries (clump and conventional evenly spaced planting, ESP), two water levels (high and low, representing well-watered and water-limited condition, respectively), and three soil surface treatments (lid covered, straw-mulched, and bare). Air temperature and relative humidity (RH) within the plant canopy were measured every five minutes at different growth stages. Mean vapor pressure deficits (VPDs) within the clumps were consistently lower than those for ESPs, indicating that clumps improved the microclimate. Clumps had significantly higher harvest index (HI) compared to ESPs (0.48 vs. 0.43), which was largely due to clumps having an average of 0.4 tillers per plant compared to 1.2 tillers per plant for ESPs. Grain yield in the current study was similar between clumps and ESPs. However, our results suggest that improved microclimate was likely a reason for clumps producing significantly higher grain yields compared to ESPs in previous studies.


Asunto(s)
Productos Agrícolas , Grano Comestible , Microclima , Sorghum , Biomasa , Sorghum/crecimiento & desarrollo , Agua
15.
PLoS One ; 12(12): e0189669, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29267314

RESUMEN

Stable quantitative trait loci (QTL) are important for deployment in marker assisted selection in wheat (Triticum aestivum L.) and other crops. We reported QTL discovery in wheat using a population of 217 recombinant inbred lines and multiple statistical approach including multi-environment, multi-trait and epistatic interactions analysis. We detected nine consistent QTL linked to different traits on chromosomes 1A, 2A, 2B, 5A, 5B, 6A, 6B and 7A. Grain yield QTL were detected on chromosomes 2B.1 and 5B across three or four models of GenStat, MapQTL, and QTLNetwork while the QTL on chromosomes 5A.1, 6A.2, and 7A.1 were only significant with yield from one or two models. The phenotypic variation explained (PVE) by the QTL on 2B.1 ranged from 3.3-25.1% based on single and multi-environment models in GenStat and was pleiotropic or co-located with maturity (days to heading) and yield related traits (test weight, thousand kernel weight, harvest index). The QTL on 5B at 211 cM had PVE range of 1.8-9.3% and had no significant pleiotropic effects. Other consistent QTL detected in this study were linked to yield related traits and agronomic traits. The QTL on 1A was consistent for the number of spikes m-2 across environments and all the four analysis models with a PVE range of 5.8-8.6%. QTL for kernels spike-1 were found in chromosomes 1A, 2A.1, 2B.1, 6A.2, and 7A.1 with PVE ranged from 5.6-12.8% while QTL for thousand kernel weight were located on chromosomes 1A, 2B.1, 5A.1, 6A.2, 6B.1 and 7A.1 with PVEranged from 2.7-19.5%. Among the consistent QTL, five QTL had significant epistatic interactions (additive × additive) at least for one trait and none revealed significant additive × additive × environment interactions. Comparative analysis revealed that the region within the confidence interval of the QTL on 5B from 211.4-244.2 cM is also linked to genes for aspartate-semialdehyde dehydrogenase, splicing regulatory glutamine/lysine-rich protein 1 isoform X1, and UDP-glucose 6-dehydrogenase 1-like isoform X1. The stable QTL could be important for further validation, high throughput SNP development, and marker-assisted selection (MAS) in wheat.


Asunto(s)
Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/genética , Cromosomas de las Plantas , ADN de Plantas/genética , Epistasis Genética , Ligamiento Genético
16.
J Plant Physiol ; 163(2): 154-64, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16399006

RESUMEN

Deficit irrigation in winter wheat has been practiced in the areas with limited irrigation water resources. The objectives of this study were to (i) understand the physiological basis for determinations of grain yield and water-use efficiency in grain yield (WUE) under deficit irrigation; and (ii) investigate the effect of deficit irrigation on dry matter accumulation and remobilization of pre-anthesis carbon reserves during grain filling. A field experiment was conducted in the Southern High Plains of the USA and winter wheat (cv. TAM 202) was grown on Pullman clay loam soil (fine mixed thermic Torretic Paleustoll). Treatments consisted of rain-fed, deficit irrigation from jointing to the middle of grain filling, and full irrigation. The physiological measurements included leaf water potential, net photosynthetic rate (Pn), stomatal conductance (Gs), and leaf area index. The rain-fed treatment had the lowest seasonal evapotranspiration (ET), biomass, grain yield, harvest index (HI) and WUE as a result of moderate to severe water stress from jointing to grain filling. Irrigation application increased seasonal ET, and ET increased as irrigation frequency increased. The seasonal ET increased 20% in one-irrigation treatments between jointing and anthesis, 32-46% in two-irrigation treatments, and 67% in three- and full irrigation treatments. Plant biomass, grain yield, HI and WUE increased as the result of increased ET. The increased yield under irrigation was mainly contributed by the increased number of spikes, and seeds per square meter and per spike. Among the irrigation treatments, grain yield increased significantly but the WUE increased slightly as irrigation frequency increased. The increased WUE under deficit irrigation was contributed by increased HI. Water stress during grain filling reduced Pn and Gs, and accelerated leaf senescence. However, the water stress during grain filling induced remobilization of pre-anthesis carbon reserves to grains, and the remobilization of pre-anthesis carbon reserves significantly contributed to the increased grain yield and HI. The results of this study showed that deficit irrigation between jointing and anthesis significantly increased wheat yield and WUE through increasing both current photosynthesis and the remobilization of pre-anthesis carbon reserves.


Asunto(s)
Triticum/fisiología , Agua/fisiología , Adaptación Fisiológica , Biomasa , Hojas de la Planta/fisiología , Estaciones del Año , Semillas/crecimiento & desarrollo , Factores de Tiempo , Triticum/crecimiento & desarrollo
17.
Sci Rep ; 6: 38995, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27976710

RESUMEN

To compare the soil water balance, yield and water use efficiency (WUE) of spring maize under different mulching types in the Loess Plateau, a 7-year field experiment was conducted in the Changwu region of the Loess Plateau. Three treatments were used in this experiment: straw mulch (SM), plastic film mulch (PM) and conventional covering without mulch (CK). Results show that the soil water change of dryland spring maize was as deep as 300 cm depth and hence 300 cm is recommended as the minimum depth when measure the soil water in this region. Water use (ET) did not differ significantly among the treatments. However, grain yield was significantly higher in PM compared with CK. WUE was significantly higher in PM than in CK for most years of the experiment. Although ET tended to be higher in PM than in the other treatments (without significance), the evaporation of water in the fallow period also decreased. Thus, PM is sustainable with respect to soil water balance. The 7-year experiment and the supplemental experiment thus confirmed that straw mulching at the seedling stage may lead to yield reduction and this effect can be mitigated by delaying the straw application to three-leaf stage.


Asunto(s)
Agua Subterránea , Membranas Artificiales , Estaciones del Año , Suelo , Zea mays/crecimiento & desarrollo , China
18.
PLoS One ; 11(4): e0153695, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27100187

RESUMEN

Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2). Average yields of 7.42 t ha(-1) and WUE of 1.84 kg m(-3) were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.


Asunto(s)
Adaptación Fisiológica , Riego Agrícola/métodos , Grano Comestible/crecimiento & desarrollo , Estaciones del Año , Triticum/fisiología , Agua/fisiología , China , Semillas/crecimiento & desarrollo
19.
J Plant Physiol ; 171(14): 1289-98, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25014264

RESUMEN

Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112.


Asunto(s)
Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis , Proteínas de Plantas/genética , Estrés Fisiológico , Transcriptoma , Triticum/genética , Adaptación Biológica , Sequías , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad de la Especie , Triticum/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA