Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405307, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874082

RESUMEN

Metal-organic framework (MOF) glasses, known for their potential in gas separation, optics, and solid-state electrolytes, benefit from the processability of their (supercooled) liquid state. Traditionally, MOF glasses are produced by heating MOF crystals to their melting point and then cooling the liquid MOF to room temperature under an inert atmosphere. While effective, this melt-quenching technique requires high energy due to the high temperatures involved. It also limits the scope of new material development by restricting the compositional range to only those combinations of metal ions and linkers that are highly thermally stable. An alternative, mechanical milling at room temperature, has demonstrated its capability to transform MOF crystals into amorphous phases. However, the specific conditions under which these amorphous phases exhibit glass-like behavior remain uncharted. In this study, we explore the mechanochemical amorphization and vitrification of a variety of zeolitic imidazolate frameworks (ZIFs) with diverse linkers and different metal ions (Zn2+, Co2+ and Cu2+) at room temperature. Our findings demonstrate that ZIFs capable of melting can be successfully converted into glasses through ball-milling. Remarkably, some non-meltable ZIFs can also be vitrified using the ball-milling technique, as highlighted by the preparation of the first Cu2+-based ZIF glass.

2.
J Biol Chem ; 298(12): 102649, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36441024

RESUMEN

Lysosomes are one of the major centers for regulating cargo degradation and protein quality control. Transcription factor EB (TFEB)-promoted lysosome biogenesis enhances lysosome-mediated degradation and alleviates neurodegenerative diseases, but the mechanisms underlying TFEB modification and activation are still poorly understood. Here, we report essential roles of TFEB acetylation in TFEB nuclear translocation and lysosome biogenesis, which are independent of TFEB dephosphorylation. By screening small molecules, we find that Trichostatin A (TSA), the pan-inhibitor of histone deacetylases (HDACs), promotes nuclear translocation of TFEB. TSA enhances the staining of cells by LysoTracker Red and increases the expression of lysosomal and autophagic genes. We identify four novel acetylated lysine residues in TFEB, which are important for TFEB nuclear translocation and lysosome biogenesis. We show that TFEB acetylation is regulated by HDACs (HDAC5, HDAC6, and HDAC9) and lysine acetyltransferases (KATs), including ELP3, CREBBP, and HAT1. During TSA-induced cytosol-to-nucleus translocation of TFEB, acetylation is independent of TFEB dephosphorylation, since the mTORC1- or GSK3ß-related phosphorylation sites on TFEB are still phosphorylated. Administration of TSA to APP/PS1 mice increases the expression of lysosomal and autophagic genes in mouse brains and also improves memory. Accordingly, the ß-amyloid plaque burden is decreased. These results show that the acetylation of TFEB, as a novel mechanism of TFEB activation, promotes lysosome biogenesis and alleviates the pathogenesis of Alzheimer's disease. Our results also suggest that HDAC inhibition can promote lysosome biogenesis, and this may be a potential therapeutic approach for the treatment of neurodegenerative diseases and disorders related to HDAC hyperactivation.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Acetilación , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Lisosomas/metabolismo , Autofagia/genética , Fenotipo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
3.
J Am Chem Soc ; 145(16): 9273-9284, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37070213

RESUMEN

The liquid phase of metal-organic frameworks (MOFs) is key for the preparation of melt-quenched bulk glasses as well as the shaping of these materials for various applications; however, only very few MOFs can be melted and transformed into stable glasses. Here, the solvothermal and mechanochemical preparation of a new series of functionalized derivatives of ZIF-4 (Zn(im)2, where im- = imidazolate and ZIF = zeolitic imidazolate framework) containing the cyano-functionalized imidazolate linkers CNim- (4-cynanoimidazolate) and dCNim- (4,5-dicyanoimidazolate) is reported. The strongly electron-withdrawing nature of the CN groups facilitates low-temperature melting of the materials (below 310 °C for some derivatives) and the formation of microporous ZIF glasses with remarkably low glass-transition temperatures (down to only about 250 °C) and strong resistance against recrystallization. Besides conventional ZIF-4, the CN-functionalized ZIFs are so far the only MOFs to show an exothermic framework collapse to a low-density liquid phase and a subsequent transition to a high-density liquid phase. By systematic adjustment of the fraction of cyano-functionalized linkers in the ZIFs, we derive fundamental insights into the thermodynamics of the unique polyamorphic nature of these glass formers as well as further design rules for the porosity of the ZIF glasses and the viscosity of their corresponding liquids. The results provide new insights into the unusual phenomenon of liquid-liquid transitions as well as a guide for the chemical diversification of meltable MOFs, likely with implications beyond the archetypal ZIF glass formers.

4.
Alzheimers Dement ; 19(4): 1343-1357, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36130073

RESUMEN

INTRODUCTION: Lysosomes are degradative organelles that maintain cellular homeostasis and protein quality control. Transcription factor EB (TFEB)-mediated lysosome biogenesis enhances lysosome-dependent degradation and alleviates neurodegenerative diseases, but the mechanisms underlying TFEB regulation and modification are still poorly understood. METHODS: By screening novel small-molecule compounds, we identified a group of lysosome-enhancing compounds (LYECs) that promote TFEB activation and lysosome biogenesis. RESULTS: One of these compounds, LH2-051, significantly inhibited the function of the dopamine transporter (DAT) and subsequently promoted lysosome biogenesis. We uncovered cyclin-dependent kinase 9 (CDK9) as a novel regulator of DAT-mediated lysosome biogenesis and identified six novel CDK9-phosphorylated sites on TFEB. We observed that signal transduction by the DAT-CDK9-TFEB axis occurs on lysosomes. Finally, we found that LH2-051 enhanced the degradation of amyloid beta plaques and improved the memory of amyloid precursor protein (APP)/Presenilin 1 (PS1) mice. DISCUSSION: We identified the DAT-CDK9-TFEB signaling axis as a novel regulator of lysosome biogenesis. Our study sheds light on the mechanisms of protein quality control under pathophysiological conditions.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Lisosomas/metabolismo , Autofagia
5.
Sheng Li Xue Bao ; 74(6): 979-992, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36594386

RESUMEN

Skin wound healing tends to slow down with aging, which is detrimental to both minor wound recovery in daily life and the recovery after surgery. The aim of current study was to explore the effect of histone deacetylase 6 (HDAC6) on wound healing during aging. Cultured human dermal fibroblasts (HDFs) and mouse full-thickness skin wound model were used to explore the functional changes of replicative senescent dermal fibroblasts and the effect of aging on skin wound healing. Scratch wound healing assay revealed significantly decreased migration speed of senescent HDFs, and BrdU incorporation assay indicated their considerably retardant proliferation. The protein expression levels of collagen and HDAC6 were significantly decreased in both senescent HDFs and skin tissues from aged mice. HDAC6 activity inhibition with highly selective inhibitor tubastatin A (TsA) or HDAC6 knockdown with siRNA decreased the migration speed of HDFs and considerably suppressed fibroblast differentiation induced by transforming growth factor-ß1 (TGF-ß1), which suggests the involvement of HDAC6 in regulating fundamental physiological activities of dermal fibroblasts. In vivo full-thickness skin wound healing was significantly delayed in young HDAC6 knockout mice when compared with young wild type mice. In addition, the wound healing was significantly slower in aged wild type mice than that in young wild type mice, and became even worse in aged HDAC6 knockout aged mice. Compared to the aged wild type mice, aged HDAC6 knockout mice exhibited delayed angiogenesis, reduced collagen synthesis, and decreased collagen deposition in skin wounds. Together, these results suggest that delayed skin wound healing in aged mice is associated with impaired fibroblast function. Adequate expression and activity of HDAC6 are required for fibroblasts migration and differentiation.


Asunto(s)
Piel , Cicatrización de Heridas , Humanos , Animales , Ratones , Anciano , Histona Desacetilasa 6 , Movimiento Celular , Colágeno/metabolismo , Colágeno/farmacología , Fibroblastos , Ratones Noqueados , Células Cultivadas
6.
Conscious Cogn ; 91: 103131, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33862365

RESUMEN

This study aimed to investigate how acute stress impinges on individual's cognitive inhibition and response inhibition abilities. Electroencephalography was adopted when 35 healthy adult females performing the No Go Flanker task before and after the Trier Social Stress Test. Both inhibition processes evoked N2 and P3 components, but only the response inhibition evoked the late positive potential (LPP), indicating the response inhibition needed continuous cognitive effort to inhibit the prepotent response. The N2 and the P3 amplitudes were decreased, while the LPP amplitudes were increased under acute stress. These results suggested that acute stress caused the detrimental effect by occupying cognitive resources. Contrastingly, individuals actively regulated and made more efforts to counteract the detrimental effect of acute stress on response inhibition. Thus, acute stress impaired cognitive inhibition but did not affect response inhibition.


Asunto(s)
Potenciales Evocados , Inhibición Psicológica , Adulto , Cognición , Electroencefalografía , Femenino , Humanos , Tiempo de Reacción
7.
Angew Chem Int Ed Engl ; 60(3): 1290-1297, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-32996683

RESUMEN

Arranging ionic liquids (ILs) with long-range order can not only enhance their performance in a desired application, but can also help elucidate the vital between structure and properties. However, this is still a challenge and no example has been reported to date. Herein, we report a feasible strategy to achieve a crystalline IL via coordination self-assembly based reticular chemistry. IL1 MOF, was prepared by designing an IL bridging ligand and then connecting them with metal clusters. IL1 MOF has a unique structure, where the IL ligands are arranged on a long-range ordered framework but have a labile ionic center. This structure enables IL1 MOF to break through the typical limitation where the solid ILs have lower proton conductivity than their counterpart bulk ILs. IL1 MOF shows 2-4 orders of magnitude higher proton conductivity than its counterpart IL monomer across a wide temperature range. Moreover, by confining the IL within ultramicropores (<1 nm), IL1 MOF suppresses the liquid-solid phase transition temperatures to lower than -150 °C, allowing it to function with high conductivity in a subzero temperature range.

8.
Am J Physiol Cell Physiol ; 318(5): C857-C869, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32186933

RESUMEN

Diabetes (especially Type II) is one of the primary threats to cardiovascular health. Wound healing defects and vascular dysfunction are common in diabetic patients, and the primary cause of deterioration is sustained high plasma glucose. microRNA, a noncoding RNA, has regulatory functions that are critical to maintaining homeostasis. MicroRNA (miR)-126-3p is a potential diabetes biomarker and a proangiogenic factor, and its plasma level decreases in diabetic patients. Previous studies have revealed the proangiogenic character of the gasotransmitter hydrogen sulfide (H2S). However, little is known about the relationship between H2S and miR-126-3p when the extracellular glucose level is high, let alone their influences on deteriorated endothelial cell migration, a key component of angiogenesis, which is crucial for wound healing. Human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33.3 mmol/L) or normal glucose (5.5 mmol/L) for 48 h. Affymetrix miRNA profiling and real-time PCR were used to validate the miRNA expression. An H2S probe (HSip-1) was used to detect endogenous H2S. Scratch wound-healing assays were used to evaluate HUVEC migration. The protein levels were quantified by Western blot. Both exogenous and endogenous H2S could upregulate the miR-126-3p levels in HUVECs or muscle tissue. High glucose decreased the H2S level and the protein expression of the H2S-producing enzyme cystathionine γ-lyase (CSE) in HUVECs; however, the DNA methyltransferase 1 (DNMT1) protein level was upregulated. CSE overexpression not only increased the miR-126-3p level by decreasing the DNMT1 protein level but also rescued the deteriorated cell migration in HUVECs treated with high glucose. DNMT1 overexpression decreased the miR-126-3p level and inhibited the migration of HUVECs, whereas silencing DNMT1 improved cell migration. High glucose decreased the endogenous H2S and miR-126-3p levels and increased the DNMT1 expression, thus inducing the migration dysfunction of HUVECs. Treatment with exogenous H2S or the overexpression of the endogenously produced enzyme CSE would rescue this migration dysfunction through H2S-DNMT1-miR-126-3p.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Sulfuro de Hidrógeno/farmacología , MicroARNs/genética , Neovascularización Fisiológica/efectos de los fármacos , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/crecimiento & desarrollo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Movimiento Celular/efectos de los fármacos , Cistationina gamma-Liasa/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glucosa/toxicidad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Sulfuro de Hidrógeno/metabolismo , Ratones , Neovascularización Fisiológica/genética , Transducción de Señal/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
9.
Conscious Cogn ; 75: 102796, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31374428

RESUMEN

The role of attentional resources and affective stimuli on temporal selective attention in the rapid serial visual presentation (RSVP) paradigm under acute stress was explored among women. Seventy-three female undergraduates were randomly assigned to the Trier Social Stress Test (TSST) group or control group. We found that when the first target was negative, stress increased its accuracy. Stress promoted the recognition of neutral target two (T2) only at lag2, and there was no interaction with theemotionality of target one (T1). In addition, the accumulated effect of stress enhanced temporal selective attention, predominately 20-40 min after the TSST task; cortisol concentration during this time period could significantly predict AB task performance. In summary, when attentional resources were severely insufficient, individuals under stress were more able to focus on the current target; that is, stress facilitated selective attention. A novel result was that participants were exempt from the affective influence of previous targets, which may have been caused by activation of the autonomic nervous system and gender differences.


Asunto(s)
Afecto/fisiología , Parpadeo Atencional/fisiología , Estrés Psicológico/fisiopatología , Análisis y Desempeño de Tareas , Adulto , Femenino , Humanos , Adulto Joven
10.
J Mol Cell Cardiol ; 124: 58-69, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30315806

RESUMEN

Doxorubicin (Dox) is an efficacious antineoplastic drug but is limited used for its cardiotoxicity. Histone Deacetylase 6 (HDAC6) has been indicated to participate in cardiomyopathies, however, its role in Dox-induced cardiac injury is largely unknown. In this study, we firstly aimed to determine the role of HDAC6 in Dox-induced cardiomyopathy. Immunoblotting revealed that Dox increased HDAC6 protein level and activity and decreased α-tubulin acetylation level in vitro and vivo. HDAC6 knockout (HDAC6-/-) mice showed obvious anti-Dox cardiotoxicity by conserved cardiac function monitored by echocardiography and the protection was reversed by Nocodazole, one drug lowering α-tubulin acetylation. Further mechanism investigation showed that improvement of mitochondria function and autophagy flux was partially inhibited by Nocodazole and Colchicine which lowers α-tubulin acetylation in neonatal rat cardiac myocytes. Aiming at transforming this research to clinical application, we then explored the effect of combined utilization of HDAC6 inhibitor and Dox on tumour and cardiac function. Results showed that Tubastatin A, one HDAC6 selective inhibitor, protected against Dox-induced acute cardiomyopathy without influencing the effect of Dox on inhibiting MDA-MB-231 subcutaneous tumour growth. These findings suggest a new treatment for cancer with Dox by combined utilization with HDAC6 selective inhibitors.


Asunto(s)
Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Doxorrubicina/efectos adversos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Línea Celular , Modelos Animales de Enfermedad , Activación Enzimática , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Ratas
11.
Am J Physiol Cell Physiol ; 310(4): C305-17, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26879375

RESUMEN

We previously found hydrogen sulfide (H2S) to be a new proangiogenic factor. However, the mechanisms underlying the cardiovascular effect of this small gas molecule remain largely unknown. The aim of the present study was to identify the essential microRNAs (miRNAs) involved in the transduction of H2S signals in vascular endothelial cells (ECs). The expression of miR-640 and its signaling elements, vascular endothelial growth factor receptor 2 (VEGFR2), hypoxia inducible factor 1-α (HIF1A), and mammalian target of rapamycin (mTOR), was measured using quantitative PCR and Western blotting. Overexpression and inhibition of miR-640 were performed to clarify their roles in mediating the effect of H2S. In addition, knockdown of VEGFR2, HIF1A, and mTOR was performed using siRNAs, dominant negative mutants, or inhibitors to examine their roles in the transduction of the H2S signals. miR-640 levels decreased in vascular ECs that were treated with H2S, whereas overexpression of miR-640 blunted the proangiogenic effect of H2S. Knockdown of either VEGFR2 or mTOR blunted the downregulation of miR-640 and the proangiogenic effect induced by H2S. In addition, miR-640 bound to the 3'-UTR of HIF1A mRNA and then inhibited the expression of HIF1A. The inhibition could be recovered by treating cells with H2S. Thus we concluded that miR-640 plays a pivotal role in mediating the proangiogenic effect of H2S; H2S acts through downregulation of the expression of miR-640 and increasing the levels of HIF1A through the VEGFR2-mTOR pathway.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , MicroARNs/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Regiones no Traducidas 3' , Sitios de Unión , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , MicroARNs/genética , Mutación , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética , Transfección , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
12.
Heliyon ; 10(3): e24779, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38314260

RESUMEN

Sunitinib (SU) is widely used to treat solid tumors but it can be cardiotoxic and often leads to drug withdrawn or discontinuation. Astragaloside IV (ASIV) is the essential active component of the Chinese herb Astragalus membranaceus which shows potential cardioprotective effects. Herein, we investigated the effect of ASIV on SU-associated cardiotoxicity and its mechanisms. We showed that ASIV significantly ameliorated SU-induced myocardial injury in mice, as evidenced by an improvement in left ventricular ejection fraction (EF) and a decrease in blood pressure and serum concentration of myocardial injury markers. ASIV attenuated SU-induced myocardial inflammatory infiltration and fibrotic lesions. In addition, ASIV suppressed SU-induced myocardial oxidative stress and apoptosis both in vitro and in vivo. Furthermore, SU increased COUP-TFII expression both in mRNA and protein levels in mice myocardial tissue, primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cell lines, and this effect was rescued by ASIV. Knockdown of COUP-TFII reduced the oxidative stress and apoptosis induced by SU in NRCMs and H9c2 cell lines. However, the overexpression of COUP-TFII blocked the protective effects of ASIV on SU-treated cardiomyocytes. Thus, our results demonstrated that ASIV ameliorated SU-indued cardiotoxicity by inhibiting COUP-TFII, suggesting that ASIV might be a potential therapeutic strategy for the prevention of SU-associated cardiotoxicity.

13.
Nat Commun ; 15(1): 4420, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789474

RESUMEN

By combining the porosity of crystalline metal-organic frameworks (MOFs) with the unique processability of the liquid state, melt-quenched MOF glasses offer exciting opportunities for molecular separation. However, progress in this field is limited by two factors. Firstly, only very few MOFs melt at elevated temperatures and transform into stable glasses upon cooling the corresponding MOF liquid. Secondly, the MOF glasses obtained thus far feature only very small porosities and very small pore sizes. Here, we demonstrate solvent-assisted linker exchange (SALE) as a versatile method to prepare highly porous melt-quenched MOF glasses from the canonical ZIF-8. Two additional organic linkers are incorporated into the non-meltable ZIF-8, yielding high-entropy, linker-exchanged ZIF-8 derivatives undergoing crystal-to-liquid-to-glass phase transitions by thermal treatment. The ZIF-8 glasses demonstrate specific pore volumes of about 0.2 cm3g-1, adsorb large amounts of technologically relevant C3 and C4 hydrocarbons, and feature high kinetic sorption selectivities for the separation of propylene from propane.

14.
Nat Commun ; 15(1): 2040, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448429

RESUMEN

Metal-organic framework (MOF) glasses are an emerging class of glasses which complement traditional inorganic, organic and metallic counterparts due to their hybrid nature. Although a few zeolitic imidazolate frameworks have been made into glasses, how to melt and quench the largest subclass of MOFs, metal carboxylate frameworks, into glasses remains challenging. Here, we develop a strategy by grafting the zwitterions on the carboxylate ligands and incorporating organic acids in the framework channels to enable the glass formation. The charge delocalization of zwitterion-acid subsystem and the densely filled channels facilitate the coordination bonding mismatch and thus reduce the melting temperature. Following melt-quenching realizes the glass formation of a family of carboxylate MOFs (UiO-67, UiO-68 and DUT-5), which are usually believed to be un-meltable. Our work opens up an avenue for melt-quenching porous molecular solids into glasses.

15.
Chem Sci ; 15(19): 7198-7205, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756817

RESUMEN

Hybrid organic-inorganic perovskites (HOIPs) occupy a prominent position in the field of materials chemistry due to their attractive optoelectronic properties. While extensive work has been done on the crystalline materials over the past decades, the newly reported glasses formed from HOIPs open up a new avenue for perovskite research with their unique structures and functionalities. Melt-quenching is the predominant route to glass formation; however, the absence of a stable liquid state prior to thermal decomposition precludes this method for most HOIPs. In this work, we describe the first mechanochemically-induced crystal-glass transformation of HOIPs as a rapid, green and efficient approach for producing glasses. The amorphous phase was formed from the crystalline phase within 10 minutes of ball-milling, and exhibited glass transition behaviour as evidenced by thermal analysis techniques. Time-resolved in situ ball-milling with synchrotron powder diffraction was employed to study the microstructural evolution of amorphisation, which showed that the crystallite size reaches a comminution limit before the amorphisation process is complete, indicating that energy may be further accumulated as crystal defects. Total scattering experiments revealed the limited short-range order of amorphous HOIPs, and their optical properties were studied by ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy.

16.
Neural Regen Res ; 18(11): 2370-2376, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37282455

RESUMEN

Millions of people are suffering from Alzheimer's disease globally, but there is still no effective treatment for this neurodegenerative disease. Thus, novel therapeutic approaches for Alzheimer's disease are needed, which requires further evaluation of the regulatory mechanisms of protein aggregate degradation. Lysosomes are crucial degradative organelles that maintain cellular homeostasis. Transcription factor EB-mediated lysosome biogenesis enhances autolysosome-dependent degradation, which subsequently alleviates neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease. In this review, we start by describing the key features of lysosomes, including their roles in nutrient sensing and degradation, and their functional impairments in different neurodegenerative diseases. We also explain the mechanisms - especially the post-translational modifications - which impact transcription factor EB and regulate lysosome biogenesis. Next, we discuss strategies for promoting the degradation of toxic protein aggregates. We describe Proteolysis-Targeting Chimera and related technologies for the targeted degradation of specific proteins. We also introduce a group of LYsosome-Enhancing Compounds, which promote transcription factor EB-mediated lysosome biogenesis and improve learning, memory, and cognitive function in APP-PSEN1 mice. In summary, this review highlights the key aspects of lysosome biology, the mechanisms of transcription factor EB activation and lysosome biogenesis, and the promising strategies which are emerging to alleviate the pathogenesis of neurodegenerative diseases.

17.
Life Sci ; 328: 121867, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348812

RESUMEN

Cardiovascular diseases are a primary cause of morbidity and mortality around the world. In addition, atherosclerosis (AS)-caused cardiovascular disease is the primary cause of death in human diseases, and almost two billion people suffer from carotid AS worldwide. AS is caused by chronic inflammation of the arterial vessel and is initiated by dysfunction of vascular endothelial cells. Neutrophils protect against pathogen invasion because they function as a component of the innate immune system. However, the contribution of neutrophils to cardiovascular disease has not yet been clarified. Neutrophil extracellular traps (NETs) represent an immune defense mechanism that is different from direct pathogen phagocytosis. NETs are extracellular web-like structures activated by neutrophils, and they play important roles in promoting endothelial inflammation via direct or indirect pathways. NETs consist of DNA, histones, myeloperoxidase, matrix metalloproteinases, proteinase 3, etc. Most of the components of NETs have no direct toxic effect on endothelial cells, such as DNA, but they can damage endothelial cells indirectly. In addition, NETs play a critical role in the process of AS; therefore, it is important to clarify the mechanisms of NETs in AS because NETs are a new potential therapeutic target AS. This review summarizes the possible mechanisms of NETs in AS.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Trampas Extracelulares , Humanos , Trampas Extracelulares/metabolismo , Células Endoteliales , Enfermedades Cardiovasculares/metabolismo , Neutrófilos/metabolismo , Inflamación/metabolismo , Aterosclerosis/metabolismo , ADN/metabolismo , Endotelio
18.
Biomed Pharmacother ; 168: 115752, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37875045

RESUMEN

Cardiovascular disease (CVD) remains the leading cause of death and disability globally. A wide range of CVDs have been reported, each of which diverges significantly, exhibiting sophisticated types of pathogenesis (e.g., inflammatory, oxidative stress, and disorders in cardiomyocyte metabolism). Compared with conventional treatments in modern medicine, traditional Chinese medicine (TCM) can exhibit comparative advantages in the treatment of CVDs. TCM can be utilized to develop effective strategies for addressing the challenges of CVD, with fewer side effects and higher therapeutic efficiency. Astragaloside IV (AS-IV) has been confirmed as one of the major active ingredients found in Astragalus membranaceus (a Chinese herbal medicine that has been extensively employed clinically for the treatments of CVDs). Since recent studies have shown that AS-IV in CVD treatments has achieved promising results, the substance has aroused great attention and further discussions in the field. The present review aims to summarize the recent pharmacological advances in employing AS-IV in the treatment of CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Medicamentos Herbarios Chinos , Saponinas , Triterpenos , Humanos , Medicina Tradicional China , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Saponinas/farmacología , Saponinas/uso terapéutico , Triterpenos/farmacología , Triterpenos/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico
19.
Cell Rep ; 42(7): 112750, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37421623

RESUMEN

The present study examines whether there is a mechanism beyond the current concept of post-translational modifications to regulate the function of a protein. A small gas molecule, hydrogen sulfide (H2S), was found to bind at active-site copper of Cu/Zn-SOD using a series of methods including radiolabeled binding assay, X-ray absorption near-edge structure (XANES), and crystallography. Such an H2S binding enhanced the electrostatic forces to guide the negatively charged substrate superoxide radicals to the catalytic copper ion, changed the geometry and energy of the frontier molecular orbitals of the active site, and subsequently facilitated the transfer of an electron from the superoxide radical to the catalytic copper ion and the breakage of the copper-His61 bridge. The physiological relevance of such an H2S effect was also examined in both in vitro and in vivo models where the cardioprotective effects of H2S were dependent on Cu/Zn-SOD.


Asunto(s)
Cobre , Sulfuro de Hidrógeno , Cobre/metabolismo , Superóxido Dismutasa/metabolismo , Dominio Catalítico , Superóxidos , Zinc/metabolismo
20.
Cells ; 11(17)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36078059

RESUMEN

INTRODUCTION: Diabetes mellitus results in high rates of cardiovascular disease, such as microcirculation disorder of the lower limbs, with angiogenesis impairment being the main factor. The endothelium functions as a barrier between blood and the vessel wall. Vascular endothelial cell dysfunction caused by hyperglycemia is the main factor leading to angiogenesis impairment. Hydrogen sulfide (H2S) and miR-126-3p are known for their pro-angiogenesis effects; however, little is known about how H2S regulates miR-126-3p to promote angiogenesis under high-glucose conditions. OBJECTIVES: The main objective of this research was to explore how H2S regulates the miR-126-3p levels under high-glucose conditions. METHODS: We evaluated the pro-angiogenesis effects of H2S in the diabetic hindlimb of an ischemia mice model and in vivo Matrigel plugs. Two microRNA datasets were used to screen microRNAs regulated by both diabetes and H2S. The mRNA and protein levels were detected through real-time PCR and Western blot, respectively. Immunofluorescent staining was also used to assess the capillary density and to evaluate the protein levels in vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were used in in vitro experiments. A scratch wound-healing assay was applied to detect the migration ability of endothelial cells. Methylated DNA immunoprecipitation combined with real-time PCR was chosen to identify the DNA methylation level in the HUVECs. RESULTS: Exogenous H2S improved angiogenesis in diabetic mice. miR-126-3p was regulated by both diabetes and H2S. Exogenous H2S up-regulated the miR-126-3p level and recovered the migration rate of endothelial cells via down-regulating the DNMT1 protein level, which was increased by high glucose. Furthermore, DNMT1 upregulation in the HUVECs increased the methylation levels of the gene sequences upstream of miR-126-3p and then inhibited the transcription of primary-miR-126, thus decreasing the miR-126-3p level. CSE overexpression in the HUVECs rescued the miR-126-3p level, by decreasing the methylation level to improve migration. CONCLUSION: H2S increases the miR-126-3p level through down-regulating the methylation level, by decreasing the DNMT1 protein level induced by high glucose, thus improving the angiogenesis originally impaired by high glucose.


Asunto(s)
Diabetes Mellitus Experimental , Sulfuro de Hidrógeno , MicroARNs , Inductores de la Angiogénesis/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Ratones , MicroARNs/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA