Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 335: 117472, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36827800

RESUMEN

In this study, we aimed to investigate the long-term spatiotemporal changes in hydrodynamics, antibiotics, nine typical subtypes of antibiotic resistance genes (ARGs), class 1 integron gene (intI1), and microbial communities in the sediments of a semi-enclosed estuary during ecological restoration with four treatment stages (influent (#1), effluent of the biological treatment area (#2), oxic area (#3), and plant treatment area (#4)). Ecological restoration of the estuary reduced common pollutants (nitrogen and phosphorus) in the water, whereas variations in ARGs showed noticeable seasonal and spatial features. The absolute abundance of ARGs at sampling site #2 considerably increased in autumn and winter, while it significantly increased at sampling site #3 in spring and summer. The strong intervention of biological treatment (from #1 to #2) and aerators (from #2 to #3) in the estuary substantially affected the distribution of ARGs and dominant antibiotic-resistant bacteria (ARB). The dominant ARB (Thiobacillus) in estuarine sediments may have low abundance but important dissemination roles. Meanwhile, redundancy and network analysis revealed that the microbial communities and intl1 were key factors related to ARG dissemination, which was affected by spatial and seasonal ecological restoration. A positive correlation between low flow velocity and certain ARGs (tetM, tetW, tetA, sul2, and ermC) was observed, implying that flow optimization should also be considered in future ecological restoration to remediate ARGs. Furthermore, the absolute abundance of ARGs can be utilized as an index to evaluate the removal capacity of ARGs by estuarine restoration.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Genes Bacterianos , Antibacterianos , Inhibidores de la Enzima Convertidora de Angiotensina , Farmacorresistencia Microbiana/genética , China
2.
Chemosphere ; 307(Pt 1): 135596, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35803374

RESUMEN

The dissemination of antibiotic resistance genes (ARGs) in aquaculture systems is a potential threat to environmental safety and human health. However, the spatiotemporal distribution pattern of ARGs and key factors associated with their dissemination in aquaculture sediments remain unclear. In this study, ARGs, mobile genetic elements, microbial community composition, heavy metal contents, and nutrient contents of samples collected from a whole culture cycle of fish in a representative aquaculture farm were characterized. The distribution patterns of nine subtypes of ARGs (tetW, tetM, tetA, ermC, ermB, sul1, sul2, floR, and qnrS) showed clear spatiotemporal differences. The absolute abundance of ARGs in aquaculture sediments was higher in winter and in rivers of the aquaculture farm. Proteobacteria was the dominant phylum in all sediment samples. The results of network and redundancy analyses confirmed that the Dechloromonas, Candidatus Accumulibacter, Smithella, Geobacter, and Anaeromyxobacter belonging to Proteobacteria were positively correlated with ARGs, suggesting that these microbial species are potential hosts of corresponding ARGs. Our study highlights that the microbial community is the determining factor for ARG dissemination. Strategies for inhibiting these potential hosts of ARGs should be developed based on controllable factors.


Asunto(s)
Metales Pesados , Microbiota , Animales , Antibacterianos/análisis , Antibacterianos/farmacología , Acuicultura , China , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Humanos , Metales Pesados/análisis
3.
Sci Total Environ ; 806(Pt 1): 150498, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34563908

RESUMEN

Sediment microbial communities play critical roles in the health of fish and the biogeochemical cycling of elements in aquaculture ecosystems. However, the response of microbial communities to temporal and spatial variations in interconnected aquaculture pond and ditch systems remains unclear. In this study, 61 sediment bacterial samples were collected over one year from 11 sites (including five ponds and six ditches) in a 30-year-old fish aquaculture farm. The 16S rRNA approach was used to determine the relative abundances of microbial communities in the sediment samples. The relationships among nutrients, heavy metals, and abundant microorganisms were analyzed. Our results showed that Proteobacteria, Bacteroides and Chloroflexi were the predominant phyla in the sediments of aquaculture pond, with average abundances of 36.33%, 18.60%, and 14.58%, respectively. The microbial diversity in aquaculture sediments was negatively correlated (P < 0.05) with the concentrations of total nitrogen and total phosphorus in sediments, indicating that the microbial diversity is highly associated with the remediation of nutrients in sediments. The sediment samples with high similarities were discovered by the t-distributed stochastic neighbor embedding (t-SNE) method. The site-specific correlations between specific microorganisms and heavy metals were explored. The network analysis revealed that the microbial diversities in aquaculture ponds were more stable than that in aquaculture ditches. The network analysis also illustrated that the microbial genera with low relative abundances may become key groups of microbial communities in sediment ecosystems. Our work deepens the understanding of the relationships between microbial communities and the spatiotemporal characteristics of surface water and sediments in aquaculture farms.


Asunto(s)
Microbiota , Estanques , Animales , Acuicultura , Sedimentos Geológicos , ARN Ribosómico 16S/genética
4.
Bioresour Technol ; 185: 1-6, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25746471

RESUMEN

The present study investigated the influences of three metabolic uncouplers (pCP, oCP and oNP) on excess activated sludge reduction and microbial products of extracellular polymeric substances (EPS) and intracellular storage product (polyhydroxybutyrate, PHB) in short-term tests. Results showed sludge was reduced 58.2%, 59.8% and 80.8%, respectively, at pCP, oCP and oNP concentrations of 20mg/L. The dosage of three uncouplers had no obviously influences on COD removal and sludge settleability, but had significant inhibition effect on ammonia removal, especially for oNP. Low concentration of pCP and oNP (5mg/L) dosing resulted in protein and polysaccharide content increased in EPS, however, they were decreased at high pCP and oNP concentrations (>5mg/L). To oCP, the protein content in EPS was increased linearly with oCP concentration. Furthermore, metabolic uncouplers addition stimulated the production of PHB. Among three uncouplers, oCP could be an alternative uncoupler for sludge reduction in activated sludge process.


Asunto(s)
Bacterias Anaerobias/metabolismo , Biopolímeros/biosíntesis , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Aguas del Alcantarillado/microbiología , Desacopladores/farmacología , Bacterias Anaerobias/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA