Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 12705, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882893

RESUMEN

Animal movements reflect temporal and spatial availability of resources as well as when, where, and how individuals access such resources. To test these relationships for a predatory reptile, we quantified the effects of prey abundance on the spatial ecology of invasive brown treesnakes (Boiga irregularis) on Guam. Five months after toxicant-mediated suppression of a brown treesnake population, we simultaneously used visual encounter surveys to generate relative rodent abundance and radiotelemetry of snakes to document movements of surviving snakes. After snake suppression, encounter rates for small mammals increased 22-fold and brown treesnakes had smaller mean daily movement distances (24 ± 13 m/day, [Formula: see text] ± SD) and activity areas (5.47 ± 5 ha) than all previous observations. Additionally, snakes frequenting forest edges, where our small mammal encounters were the highest, had smaller mean daily movement distances and three-dimensional activity volumes compared to those within the forest interior. Collectively, these results suggest that reduced movements by snakes were in part a response to increased prey availability. The impact of prey availability on snake movement may be a management consideration when attempting to control cryptic invasive species using tools that rely on movement of the target species to be effective.


Asunto(s)
Colubridae , Animales , Colubridae/fisiología , Guam , Especies Introducidas , Mamíferos , Conducta Predatoria , Serpientes/fisiología
2.
Mov Ecol ; 10(1): 2, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033211

RESUMEN

BACKGROUND: Invasive reptiles pose a serious threat to global biodiversity, but early detection of individuals in an incipient population is often hindered by their cryptic nature, sporadic movements, and variation among individuals. Little is known about the mechanisms that affect the movement of these species, which limits our understanding of their dispersal. Our aim was to determine whether translocation or small-scale landscape features affect movement patterns of brown treesnakes (Boiga irregularis), a destructive invasive predator on the island of Guam. METHODS: We conducted a field experiment to compare the movements of resident (control) snakes to those of snakes translocated from forests and urban areas into new urban habitats. We developed a Bayesian hierarchical model to analyze snake movement mechanisms and account for attributes unique to invasive reptiles by incorporating multiple behavioral states and individual heterogeneity in movement parameters. RESULTS: We did not observe strong differences in mechanistic movement parameters (turning angle or step length) among experimental treatment groups. We found some evidence that translocated snakes from both forests and urban areas made longer movements than resident snakes, but variation among individuals within treatment groups weakened this effect. Snakes translocated from forests moved more frequently from pavement than those translocated from urban areas. Snakes translocated from urban areas moved less frequently from buildings than resident snakes. Resident snakes had high individual heterogeneity in movement probability. CONCLUSIONS: Our approach to modeling movement improved our understanding of invasive reptile dispersal by allowing us to examine the mechanisms that influence their movement. We also demonstrated the importance of accounting for individual heterogeneity in population-level analyses, especially when management goals involve eradication of an invasive species.

3.
Ecol Evol ; 12(2): e8639, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35222984

RESUMEN

We describe several photo-documented novel interactions between intraguild predators in southern Florida-the native bobcat (Lynx rufus) and the invasive Burmese python (Python bivittatus). Over several days we documented a bobcat's depredation of an unguarded python nest and subsequent python nest defense behavior following the return of both animals to the nest. This is the first documentation of any animal in Florida preying on python eggs, and the first evidence or description of such antagonistic interactions at a python nest.

4.
Ecol Evol ; 12(8): e9173, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35991280

RESUMEN

Removal sampling data are the primary source of monitoring information for many populations (e.g., invasive species, fisheries). Population dynamics, temporary emigration, and imperfect detection are common sources of variation in monitoring data and are key parameters for informing management. We developed two open robust-design removal models for simultaneously modeling population dynamics, temporary emigration, and imperfect detection: a random walk linear trend model (estimable without ancillary information), and a 2-age class informed population model (InfoPM, closely related to integrated population models) that incorporated prior information for age-structured vital rates and relative juvenile availability. We applied both models to multiyear, removal trapping time-series of a large invasive lizard (Argentine black and white tegu, Salvator merianae) in three management areas of South Florida to evaluate the effectiveness of management programs. Although estimates of the two models were similar, the InfoPMs generally returned more precise estimates, partitioned dynamics into births, deaths, net migration, and provided a decision support tool to predict population dynamics under different effort scenarios while accounting for uncertainty. Trends in tegu superpopulation abundance estimates were increasing in two management areas despite generally high removal rates. However, tegu abundance appeared to decline in the Core management area, where trapping density was the highest and immigration the lowest. Finally, comparing abundance predictions of no-removal scenarios to those estimated in each management area suggested significant population reductions due to management. These results suggest that local tegu population control via systematic trapping may be feasible with high enough trap density and limited immigration; and highlights the value of these trapping programs. We provided the first estimates of tegu abundance, capture probabilities, and population dynamics, which is critical for effective management. Furthermore, our models are applicable to a wide range of monitoring programs (e.g., carcass recovery or removal point-counts).

5.
Viruses ; 14(12)2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36560729

RESUMEN

Burmese python (Python bivittatus) is an invasive snake that has significantly affected ecosystems in southern Florida, United States. Aside from direct predation and competition, invasive species can also introduce nonnative pathogens that can adversely affect native species. The subfamily Serpentovirinae (order Nidovirales) is composed of positive-sense RNA viruses primarily found in reptiles. Some serpentoviruses, such as shingleback nidovirus, are associated with mortalities in wild populations, while others, including ball python nidovirus and green tree python nidovirus can be a major cause of disease and mortality in captive animals. To determine if serpentoviruses were present in invasive Burmese pythons in southern Florida, oral swabs were collected from both free-ranging and long-term captive snakes. Swabs were screened for the presence of serpentovirus by reverse transcription PCR and sequenced. A total serpentovirus prevalence of 27.8% was detected in 318 python samples. Of the initial swabs from 172 free-ranging pythons, 42 (24.4%) were positive for multiple divergent viral sequences comprising four clades across the sampling range. Both sex and snout-vent length were statistically significant factors in virus prevalence, with larger male snakes having the highest prevalence. Sampling location was statistically significant in circulating virus sequence. Mild clinical signs and lesions consistent with serpentovirus infection were observed in a subset of sampled pythons. Testing of native snakes (n = 219, 18 species) in part of the python range found no evidence of python virus spillover; however, five individual native snakes (2.3%) representing three species were PCR positive for unique, divergent serpentoviruses. Calculated pairwise uncorrected distance analysis indicated the newly discovered virus sequences likely represent three novel genera in the subfamily Serpentovirinae. This study is the first to characterize serpentovirus in wild free-ranging pythons or in any free-ranging North America reptile. Though the risk these viruses pose to the invasive and native species is unknown, the potential for spillover to native herpetofauna warrants further investigation.


Asunto(s)
Boidae , Nidovirales , Animales , Florida/epidemiología , Ecosistema , Especies Introducidas
6.
Conserv Biol ; 25(1): 48-55, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20825446

RESUMEN

Effective conservation metrics are needed to evaluate the success of management in a rapidly changing world. Reproductive rates and densities of breeding birds (as a surrogate for reproductive rate) have been used to indicate the quality of avian breeding habitat, but the underlying assumptions of these metrics rarely have been examined. When birds are attracted to breeding areas in part by the presence of conspecifics and when breeding in groups influences predation rates, the effectiveness of density and reproductive rate as indicators of habitat quality is reduced. It is beneficial to clearly distinguish between individual- and population-level processes when evaluating habitat quality. We use the term reproductive rate to refer to both levels and further distinguish among levels by using the terms per capita fecundity (number of female offspring per female per year, individual level) and population growth rate (the product of density and per capita fecundity, population level). We predicted how density and reproductive rate interact over time under density-independent and density-dependent scenarios, assuming the ideal free distribution model of how birds settle in breeding habitats. We predicted population density of small populations would be correlated positively with both per capita fecundity and population growth rate due to the Allee effect. For populations in the density-dependent growth phase, we predicted no relation between density and per capita fecundity (because individuals in all patches will equilibrate to the same success rate) and a positive relation between density and population growth rate. Several ecological theories collectively suggest that positive correlations between density and per capita fecundity would be difficult to detect. We constructed a decision tree to guide interpretation of positive, neutral, nonlinear, and negative relations between density and reproductive rates at individual and population levels.


Asunto(s)
Aves/fisiología , Conservación de los Recursos Naturales/métodos , Animales , Ecosistema , Femenino , Fertilidad , Masculino , Densidad de Población , Dinámica Poblacional
7.
Ecol Evol ; 9(20): 11863-11877, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31695893

RESUMEN

The persistence of an invasive species is influenced by its reproductive ecology, and a successful control program must operate on this premise. However, the reproductive ecology of invasive species may be enigmatic due to factors that also limit their management, such as cryptic coloration and behavior. We explored the mating and reproductive ecology of the invasive Brown Treesnake (BTS: Boiga irregularis) by reconstructing a multigenerational genomic pedigree based on 654 single nucleotide polymorphisms for a geographically closed population established in 2004 on Guam (N = 426). The pedigree allowed annual estimates of individual mating and reproductive success to be inferred for snakes in the study population over a 14-year period. We then employed generalized linear mixed models to gauge how well phenotypic and genomic data could predict sex-specific annual mating and reproductive success. Average snout-vent length (SVL), average body condition index (BCI), and trappability were significantly related to annual mating success for males, with average SVL also related to annual mating success for females. Male and female annual reproductive success was positively affected by SVL, BCI, and trappability. Surprisingly, the degree to which individuals were inbred had no effect on annual mating or reproductive success. When juxtaposed with current control methods, these results indicate that baited traps, a common interdiction tool, may target fecund BTS in some regards but not others. Our study emphasizes the importance of reproductive ecology as a focus for improving BTS control and promotes genomic pedigree reconstruction for such an endeavor in this invasive species and others.

8.
PLoS One ; 13(9): e0204302, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30260994

RESUMEN

Successful eradication of invasives is facilitated by early detection and prompt onset of control. However, realizing or verifying that a colonization has occurred is difficult for cryptic species especially at low population densities. Responding to the capture or unconfirmed sighting of a cryptic invasive species, and the associated effort to determine if it indicates an incipient (small, localized) population or merely a lone colonizer, is costly and cannot continue indefinitely. However, insufficient detection effort risks erroneously concluding the species is not present, allowing the population to increase in size and expand its range. Evidence for an incipient population requires detection of ≥1 individual; its absence, on the other hand, must be inferred probabilistically. We use an actual rapid response incident and species-specific detection estimates tied to a known density to calculate the amount of effort (with non-sequential detections) necessary to assert, with a pre-defined confidence, that invasive brown treesnakes are absent from the search area under a wide range of hypothetical population densities. We illustrate that the amount of effort necessary to declare that a species is absent is substantial and increases with decreased individual detection probability, decreased density, and increased level of desired confidence about its absence. Such survey investment would be justified where the cost savings due to early detection are large. Our Poisson-based model application will allow managers to make informed decisions about how long to continue detection efforts, should no additional detections occur, and suggests that effort to do so is significantly higher than previously thought. While our model application informs how long to search to infer absence of an incipient population of brown treesnakes, the approach is sufficiently general to apply to other invasive species if density-dependent detection estimates are known or reliable surrogate estimates are available.


Asunto(s)
Especies Introducidas/estadística & datos numéricos , Animales , Modelos Teóricos , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie
9.
Ecol Evol ; 8(20): 10075-10093, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30397449

RESUMEN

Many snakes are uniquely adapted to ingest large prey at infrequent intervals. Digestion of large prey is metabolically and aerobically costly, and large prey boluses can impair snake locomotion, increasing vulnerability to predation. Cessation of foraging and use of refugia with microclimates facilitating digestion are expected to be strategies employed by free-ranging snakes to cope with the demands of digestion while minimizing risk of predation. However, empirical observations of such submergent behavior from field experiments are limited. The brown treesnake (Serpentes: Colubridae: Boiga irregularis) is a nocturnal, arboreal, colubrid snake that was accidentally introduced to the island of Guam, with ecologically and economically costly consequences. Because tools for brown treesnake damage prevention generally rely on snakes being visible or responding to lures or baits while foraging, cessation of foraging activities after feeding would complicate management. We sought to characterize differences in brown treesnake activity, movement, habitat use, and detectability following feeding of large meals (rodents 33% of the snake's unfed body mass) via radio telemetry, trapping, and visual surveys. Compared to unfed snakes, snakes in the feeding treatment group showed drastic decreases in hourly and nightly activity rates, differences in refuge height and microhabitat type, and a marked decrease in detectability by trapping and visual surveys. Depression of activity lasted approximately 5-7 days, a period that corresponds to previous studies of brown treesnake digestion and cycles of detectability. Our results indicate that management strategies for invasive brown treesnakes need to account for cycles of unavailability and underscore the importance of preventing spread of brown treesnakes to new environments where large prey are abundant and periods of cryptic behavior are likely to be frequent. Characterization of postfeeding behavior changes provides a richer understanding of snake ecology and foraging models for species that consume large prey.

10.
Sci Rep ; 8(1): 10193, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29976961

RESUMEN

Invasive reptilian predators can have substantial impacts on native species and ecosystems. Tegu lizards are widely distributed in South America east of the Andes, and are popular in the international live animal trade. Two species are established in Florida (U.S.A.) - Salvator merianae (Argentine black and white tegu) and Tupinambis teguixin sensu lato (gold tegu) - and a third has been recorded there- S. rufescens (red tegu). We built species distribution models (SDMs) using 5 approaches (logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy) based on data from the native ranges. We then projected these models to North America to develop hypotheses for potential tegu distributions. Our results suggest that much of the southern United States and northern México probably contains suitable habitat for one or more of these tegu species. Salvator rufescens had higher habitat suitability in semi-arid areas, whereas S. merianae and T. teguixin had higher habitat suitability in more mesic areas. We propose that Florida is not the only state where these taxa could become established, and that early detection and rapid response programs targeting tegu lizards in potentially suitable habitat elsewhere in North America could help prevent establishment and abate negative impacts on native ecosystems.


Asunto(s)
Distribución Animal , Seguimiento de Parámetros Ecológicos/métodos , Especies Introducidas , Lagartos/fisiología , Modelos Biológicos , Animales , Florida , Bosques , México
11.
Ecology ; 87(1): 178-88, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16634309

RESUMEN

We evaluated the influences of several ecological, biological, and methodological factors on post-fledging survival of a shortgrass prairie bird, the Lark Bunting (Calamospiza melanocorys). We estimated daily post-fledging survival (n = 206, 82 broods) using radiotelemetry and color bands to track fledglings. Daily survival probabilities were best explained by drought intensity, time in season (quadratic trend), ages < or = 3 d post-fledging, and rank given drought intensity. Drought intensity had a strong negative effect on survival. Rank was an important predictor of fledgling survival only during the severe drought of 2002 when the smallest fledglings had lower survival. Recently fledged young (ages < or = 3 d post-fledging) undergoing the transition from nest to surrounding habitat experienced markedly lower survival, demonstrating the vulnerable nature of this time period. Survival was greater in mid and late season than early season, corresponding to our assumptions of food availability. Neither mark type nor sex of attending parent influenced survival. The model-averaged product of the 22-d survival calculated using mean rank and median value of time in season was 0.360 +/- 0.08 in 2001 and 0.276 +/- 0.08 in 2002. Survival estimates that account for age, condition of young, ecological conditions, and other factors are important for parameterization of realistic population models. Biologists using population growth models to elucidate mechanisms of population declines should attempt to estimate species-specific of post-fledging survival rather than use generalized estimates.


Asunto(s)
Ecosistema , Modelos Biológicos , Passeriformes/fisiología , Animales , Tamaño Corporal/fisiología , Colorado , Desastres , Electrónica/instrumentación , Femenino , Masculino , Plantas , Densidad de Población , Distribución Aleatoria , Estaciones del Año , Análisis de Supervivencia , Telemetría/veterinaria , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA