Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Analyst ; 149(6): 1939-1946, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38381155

RESUMEN

Numerous fluorescent dye-based optical sensors have been developed to detect water in organic solvents. However, only a few such sensors can detect water in polar solvents such as methanol or dimethyl sulfoxide, and their detection range is generally narrow. Therefore, in this study, a copolymer membrane incorporated with a pyridinium betaine dye (denoted PB1), which exhibited intramolecular charge transfer (ICT) characteristics, was developed to realise simple water detection in organic solvents. The pyridinium betaine structure, comprising intramolecular hydrogen bonds between the oxygen in the maleimide moiety and the hydrogen in the pyridinium, was vital for achieving efficient fluorescence emission. The membrane was prepared by copolymerising PB1 with the N,N-dimethyl acrylamide/acrylamide monomer on a glass plate, and the fluorescence in water-mixed organic solvents was investigated (λabs = 490 nm, λfl = 630 nm). The fluorescence intensity of the dye-immobilised membrane decreased with increasing water content of the organic solvents. The detection ranges in tetrahydrofuran, ethanol, methanol, and dimethyl sulfoxide were approximately <40, <40, <40, and <60 vol% water, respectively. In contrast, membranes based on a quaternary pyridinium dye (without intramolecular hydrogen bonds) did not detect water in methanol and dimethyl sulfoxide, although it was more sensitive than PB1 in the narrow region of low water concentration in THF. Theoretical calculations corroborated the importance of the pyridinium betaine structure in detecting water in organic solvents, with the increase in polarity and the formation of intermolecular hydrogen bonds between PB1 and water found to induce molecular rotation and fluorescence quenching.

2.
Phys Chem Chem Phys ; 23(9): 5074-5078, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33616128

RESUMEN

Optically inactive, paramagnetic Ir(iii)(ppy)3 and Ir(iii)(ppy)2(acac) (ppy: 2-phenylpyridinate and acac: acetylacetonate) showed nearly mirror-symmetric magnetic circularly polarised luminescence (MCPL) spectra in dilute dichloromethane and dimethyl sulfoxide under N-up and S-up geometries in a 1.6-T magnetic field. However, the MCPL signs of Ir(iii)(ppy)3 and Ir(iii)(ppy)2(acac) under the same N-up (or S-up) Faraday geometry were opposite to each other when one ppy was replaced with an acac. This ligand exchange approach provides facile control of the MCPL sign, irrespective of the Faraday geometry.

3.
J Phys Chem A ; 125(50): 10604-10614, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34905372

RESUMEN

Theoretical calculations of phosphorescent spectra and nonradiative transition (NRT) rate constants for S1 ⇝ T1, T1 ⇝ S0, and S1 ⇝ S0 were carried out to determine the best candidate for a blue-color phosphorescent complex among several derivatives of bis(2-phenylpyridine)(acetylacetonate)iridium(III). The geometries of the ground state (S0), the lowest triplet state (T1), and the lowest excited singlet state (S1) were optimized at the levels of density functional theory, in which B3LYP functionals and SBKJC+p basis sets were used. The NRT rate constants were derived by using a generating function method within the displaced harmonic oscillator model. The results of the calculation for phosphorescence showed that the introduction of F and/or CN substituents at the 4'/6'-th and 5'-th sites in 2-phenylpyridinate (ppy) ligands, respectively, causes a blue shift of the emission spectra. They also suggest that Ir(5-CN,6-F-ppy)2(acac), denoted 3(56) in the text, is a good candidate for a blue-color phosphorescent complex because a blue shift of emission spectra and a moderate intensity are obtained for phosphorescence and, furthermore, this complex is calculated to have a large rate constant for S1 ⇝ T1 and relatively smaller rate constants for T1 ⇝ S0 and S1 ⇝ S0 based on the calculations of spin-orbit coupling and nonadiabatic coupling constants.

4.
J Am Chem Soc ; 141(14): 5635-5639, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30924646

RESUMEN

Diels-Alder photocycloaddition of 9-phenylethynylanthracene results in multiple [4 + 2] and [4 + 4] cycloaddition products in solution, which can be controlled to form specific products under a restricted environment. We have exploited the gel phase of a 9-phenylethynylanthracence derivative as a confined medium to specifically yield the [4 + 2] cycloadduct in >90% yield. The photocycloadduct ( anti-form) exhibited a blue emission with CIE chromaticity of x = 0.16/ y = 0.16. Construction of an organic light emitting device with the photocycloadduct, using a carbazole-based hole transporting host, resulted in white light emission with a CIE chromaticity of x = 0.33/ y = 0.32. This observation not only highlights the use of gel chemistry to achieve the otherwise difficult to obtain photoproducts but also underlines their potential in optoelectronic device fabrication.

5.
Phys Chem Chem Phys ; 20(1): 542-552, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29220048

RESUMEN

Novel heteroleptic cyclometalated platinum(ii) complexes consisting of 5'-benzoylated 2-phenylpyridinate (ppy) cyclometalated and acetylacetonate ancillary ligands were synthesized, and their photoluminescence (PL) properties were investigated. The 5'-benzoylated complex without any other substituents exhibited phosphorescence-based monomer emission at 479 nm in dichloromethane (10 µM, rt) with a PL quantum yield of 0.28. On the other hand, in poly(methyl methacrylate) (PMMA) film, remarkable excimer emission additionally emerged at ca. 600 nm with a relatively high PL quantum yield of 0.47 as the doping level increased to 0.20 mmmol g-1, which was comparably intense in comparison with the monomer emission. In the case of the complexes with unsubstituted, 4'-benzoylated, and 5'-fluorinated ppy cyclometalated ligands, excimer emission was modestly generated at the same doping level, and thus the introduction of a benzoyl group to the 5'-position is effective to obtain remarkable excimer emission. The combination of benzoyl and fluoro groups was more effective at inducing excimer emission, and the intensity of excimer emission of the 2-(5-benzoyl-4,6-difluorophenyl)pyridinate-based complex was 3.5 times larger than that of monomer emission at a doping level of 0.20 mmmol g-1 in PMMA. From the analysis of PL lifetimes at varying concentrations, photokinetic profiles were fully analyzed according to the model system for the irreversible excimer formation, and the excimer formation rate constant of the 5'-benzoylated complex was determined in dichloromethane as 2.2 × 109 M-1 s-1, which is 4.4 times larger than that of the unsubstituted complex. We also fabricated an organic light-emitting diode using the 2-(5-benzoyl-4,6-difluorophenyl)pyridinate-based complex as a single emitter. The device exhibited pseudo-white EL with the Commission internationale de l'éclairage chromaticity coordinates of (0.42, 0.42).

6.
Front Chem ; 11: 1281168, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927569

RESUMEN

An achiral optically inactive organic luminophore, 4CzIPN, exhibits circularly polarized thermally activated delayed fluorescence when photoexcited under an external magnetic field. By embedding this luminophore in an active emission layer, an external-magnetic-field-induced circularly polarized electroluminescent device is developed in this study. The Faraday geometry of the applied magnetic field completely controls the direction of rotation of 4CzIPN-derived circularly polarized luminescence and electroluminescence.

7.
Chem Sci ; 14(8): 1978-1985, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36845939

RESUMEN

Oxocarbon derivatives consisting of 4- and 5-membered rings, referred to as croconaine and squaraine dyes and regarded as closed-shell molecules, are found to have an intermediate open-shell character from the experimental results of 1H-NMR, ESR spectroscopy, SQUID magnetometric analysis, and X-ray crystallography. We employed two chalcogenopyrylium moieties with O and S chalcogen atoms as substitutions on oxocarbons. The singlet-triplet energy gaps (ΔE S-T) associated with the degree of diradical nature are smaller for croconaines than for squaraines and smaller for thiopyrylium than for pyrylium groups. The diradical nature impacts the electronic transition energy that decreased with a decreasing degree of diradical contribution. They exhibit substantial two-photon absorption in the region over 1000 nm. The diradical character y of the dye was determined experimentally from the observed one- and two-photon absorption peaks and the triplet energy level. The present finding provides new insight into diradicaloids with the contribution of non-Kekulé oxocarbon and also showcases the correlation between the electronic transition energy and their diradical character.

8.
Chem Asian J ; 18(24): e202300868, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37917150

RESUMEN

The photophysical properties of dyes composed of two squaraine chromophores fused with a benzodipyrrole central moiety (BS1 and BS2), were investigated using steady-state absorption, fluorescence, and transient absorption spectroscopy. The dyes exhibit solvent-independent split electronic absorption due to exciton-coupling. Interestingly significant solvent-dependent fluorescence properties were observed. In toluene, they emit from the lowest excited state, while in methanol, they show weak emission in the higher energy region. In the low-temperature glass matrix, emission from the lowest excited state dominates similarly to that in toluene. The transient absorption spectra exhibit similar ground-state bleaching in toluene and methanol, revealing the formation of delocalized excited states by exciton coupling independent of solvent. However, the excited state deactivates rapidly in ultrafast time scale in methanol, likely due to solvent interaction, leading to rapid non-radiative deactivation. The PEG film doped with the exciton-coupled bis-squaraine shows a distinct fluorescence response to methanol vapor.

9.
RSC Adv ; 12(27): 17350-17361, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35765430

RESUMEN

We developed a series of blue-emitting 1,8-naphthalimide dyes covalently attached to 2-(2-hydroxyphenyl)-2H-benzotriazoles that retard photodegradation of the fluorophore. The dyes displayed weaker fluorescence emissions than the parent 1.8-naphthalimide. Quantum chemical calculations suggested that the decreased fluorescence was caused by the nonradiative deactivation promoted through the excited state intramolecular proton transfer (ESIPT) in benzotriazole components. The dyes' phosphorescences in a degassed solution at 77 K were more efficient than that of the parent 1.8-naphthalimide, indicating a possible deactivation pathway through intersystem crossing. PMMA films doped with these dyes showed higher resistance against photoaging than the film doped with an equimolar mixture of constituent 1.8-naphthalimide and the benzotriazole derivatives. Thus, the covalently linked benzotriazole units slow fluorophore degradation not only by preferential absorption of harmful UV light, which is found in the film with a simple mixture of two components, but also by the nonradiative deactivation involved in benzotriazole units.

10.
Chem Asian J ; 17(13): e202200227, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35333439

RESUMEN

Exciton interactions are not only observed in assembled molecules but also in compounds with multiple chromophores referred to as superchromophores. We have developed isomeric bis-squaraine dyes as superchromophores in which two squaraine chromophores are fused onto the isomeric benzodipyrrole skeleton so as to regulate conformations and to reduce distances between two chromophores. The dyes with benzo[1,2-b:3,4-b']dipyrrole and benzo[1,2-b:5,4-b']dipyrrole moieties exhibited split electronic absorption originated from the intramolecular exciton interaction. The intensity of the split absorption bands varies in correlation with the orientation of chromophores. The isomeric dye with benzo[1,2-b:4,5-b']dipyrrole moiety exhibited a near-infrared absorption associated with the resonance throughout two chromophores. Their electrochemical and spectroelectrochemical properties are distinct from those of monomeric dyes owing to electronic interactions between the two chromophores. Thus, the structural isomerism of the central skeleton significantly affects their optical properties as well as their electrochemical properties.


Asunto(s)
Ciclobutanos , Colorantes Fluorescentes , Ciclobutanos/química , Colorantes Fluorescentes/química , Isomerismo , Fenoles/química
11.
Chem Asian J ; 16(8): 926-930, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33687793

RESUMEN

The magnetic circularly polarized luminescence (MCPL) and photoluminescence (PL) spectra of achiral (2,3,7,8,12,13,17,18-octaethylporphyrinato)platinum(II), PtOEP, and [2-(4',6'-difluorophenyl)pyridinato-N,C2' ]platinum(II) acetylacetonate-O,O, F2 -ppyPt(acac), in toluene and dichloromethane solutions were recorded under an external magnetic field of 1.6 T with N-up and S-up Faraday geometries. The MCPL signs of PtOEP and F2 -ppyPt(acac) were controlled solely by changing the N-up and S-up geometries. The MCPL/PL wavelengths of F2 -ppyPt(acac) in solutions were varied by the ratio of the monomeric and excimeric species.

12.
Chem Asian J ; 15(6): 787-795, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32017426

RESUMEN

We found that boronate particles (BP), as a self-assembled system prepared by sequential dehydration of benzene-1,4-diboronic acid with pentaerythritol, showed greenish room-temperature phosphorescence (RTP). This emission was observed in both solid and dispersion state in water. To understand the RTP properties, X-ray crystallographic analysis, and density functional theory (DFT) and time-dependent DFT at M06-2X/6-31G(d,p) level were performed using 3,9-dibenzo-2,4,8,10-tetraoxa-3,9-diboraspiro[5.5]undecane (1) as a model compound. Our interest in functionalizing the RTP-active particles led us to graft Rhodamine B onto their surface. The resulting system emitted a dual afterglow via a Förster-type resonance energy transfer process from the BP in the excited triplet state to Rhodamine B acting as an acceptor fluorophore. This emission behavior was used for ratiometric afterglow sensing of water content in THF with a detection limit of 0.28 %, indicating that this study could pave the way for a new strategy for developing color-variable afterglow chemosensors for various analytes.

13.
Chem Commun (Camb) ; 56(68): 9890-9893, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32840518

RESUMEN

The one-step reaction of a dicyanovinyl-functionalized squaric acid with Fischer bases afforded C2v symmetric squaraine dyes with rigid planar structures due to intramolecular N-HO hydrogen bonds. Dense molecular packing, decrease of HOMO level, and sufficient thermal stability for sublimation enabled vacuum-processed OTFTs with hole mobility up to 0.32 cm2 V-1 s-1 and current on/off ratio of 106.

14.
Org Lett ; 9(10): 1999-2002, 2007 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-17444650

RESUMEN

Alkyl chain tethered bis-squaraines bind to Ca2+ ions through the participation of the negatively charged oxygen of the central cyclobutene moiety to form folded H-type aggregates. The initially formed Ca2+ complex is preorganized to facilitate cooperative allosteric binding of Ca2+, resulting in the formation of extended supramolecular arrays. The electronic absorption, IR, and ESI-MS studies support the formation of metallo supramolecular architectures of the folded H-type dimers of the bis-squaraines.

15.
Chem Commun (Camb) ; (20): 2444-5, 2002 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-12430482

RESUMEN

N2 and CO2 gas permeability of mesoporous silica glass bearing photochromic indolinospironaphth[2,1-b][1,4]oxazine through a covalent linkage was controlled by photo-irradiation: the photo-isomerization of the spironaphthoxazine to the photomerocyanine form suppressed the gas permeation of the glass.

16.
Artículo en Inglés | MEDLINE | ID: mdl-12880857

RESUMEN

Noncovalent interactions between two squarylium dyes and various model proteins have been explored. NN127 and SQ-3 are symmetric and asymmetric squarylium dyes, respectively, the fluorescence emissions of which have been shown to be enhanced upon complexation with proteins such as bovine serum albumin (BSA), human serum albumin (HSA), beta-lactoglobulin A, and trypsinogen. Although these dyes are poorly soluble in aqueous solution, they can be dissolved first in methanol followed by dilution with aqueous buffer without precipitation, and are then suitable for use as fluorescent labels in protein determination studies. The nature of interactions between these dyes and proteins was studied using a variety of buffer systems, and it was found that electrostatic interactions are involved but not dominant. Dye/protein stoichiometries in the noncovalent complexes were found to be 1:1 for SQ-3, although various possible stoichiometries were found for NN127 depending upon pH and protein. Association constants on the order of 10(5) and 10(7) were found for noncovalent complexes of SQ-3 and NN127, respectively, with HSA, indicating stronger interactions of the symmetric dye with proteins. Finally, HSA complexes with NN127 were determined by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). In particular, NN127 shows promise as a reagent capable of fluorescently labeling analyte proteins for analysis by CE-LIF without itself being significantly fluorescent under the aqueous solution conditions studied herein.


Asunto(s)
Colorantes/química , Electroforesis Capilar/métodos , Fluorometría/métodos , Proteínas/química , Rayos Láser , Proteínas/aislamiento & purificación , Espectrofotometría Ultravioleta , Electricidad Estática
17.
Org Lett ; 13(22): 5994-7, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22017474

RESUMEN

A novel class of near-infrared absorbing squarylium sensitizers with linearly extended π-conjugated structures, which were obtained by Pd-catalyzed cross-coupling reactions with stannylcyclobutenediones, has been developed for dye-sensitized solar cells. The cells based on these dyes exhibited a significant spectral response in the near-infrared region over 750 nm in addition to the visible region.

18.
Langmuir ; 22(11): 4920-2, 2006 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-16700575

RESUMEN

Dendrimers are unique polymers with globular shapes and well-defined structures. We previously prepared poly(amidoamine) (PAMAM) dendrimers having phenylalanine (Phe) residues at every chain end of the dendrimer as efficient gene carriers. In this study, we found that Phe-derivatized PAMAM dendrimers change their water solubility depending on temperature. The dendrimers were soluble in aqueous solutions at low temperatures, but they became water-insoluble at temperatures above a specific threshold, which is termed the lower critical solution temperature (LCST). Although the LCST of Phe-modified dendrimers decreased with increasing dendrimer generation, these dendrimers exhibited an LCST of 20-30 degrees C under physiological conditions. In addition, the LCST of the dendrimers was controlled by introducing isoleucine (Ile) residues at chain ends of dendrimers at varying ratios with respect to Phe residues. The PAMAM dendrimers are known to encapsulate various drug molecules. For these reasons, temperature-sensitive dendrimers might be useful as efficient drug carriers with controlled size and temperature-responsive properties.


Asunto(s)
Dendrímeros/química , Fenilalanina/química , Poliaminas/química , Concentración de Iones de Hidrógeno , Estructura Molecular , Temperatura
19.
Electrophoresis ; 27(7): 1347-54, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16568403

RESUMEN

Two new red luminescent asymmetric squarylium dyes (designated "Red-1c and Red-3") have been shown to exhibit absorbance shifts to longer wavelengths upon the addition of protein, along with a concomitant increase in fluorescence emission. Specifically, the absorbance maxima for Red-1c and Red-3 dyes are 607 and 622 nm, respectively, in the absence of HSA, and 642 and 640 nm in the presence of HSA, making the excitation of their protein complexes feasible with inexpensive and robust diode lasers. Fluorescence emission maxima, in the presence of HSA, are 656 and 644 nm for Red-1c and Red-3, respectively. Because of the inherently low fluorescence of the dyes in their free state, Red-1c and Red-3 were used as on-column labels (that is, with the dye incorporated into the separation buffer), thus eliminating the need for sample derivatization prior to injection and separation. A comparison of precolumn and on-column labeling of proteins with these squarylium dyes revealed higher efficiencies and greater sensitivities for on-column labeling, which, when conducted with a basic, high-salt content buffer, permitted baseline resolution of a mixture of five model proteins. LOD for model proteins, such as transferrin, alpha-lactalbumin, BSA, and beta-lactoglobulin A and B, labeled with these dyes and analyzed by CE with LIF detection (CE-LIF) were found to be dependent upon dye concentration and solution pH, and are as low as 5 nM for BSA. Satisfactory linear relationships between peak height (or peak area) and protein concentration were obtained by CE-LIF for this on-column labeling method with Red-3 and Red-1c.


Asunto(s)
Ciclobutanos/química , Electroforesis Capilar/métodos , Colorantes Fluorescentes/química , Indoles/química , Proteínas/análisis , Proteínas/química , Espectrometría de Fluorescencia , Fluorescencia , Rayos Láser , Cloruro de Potasio/química , Proteínas/aislamiento & purificación , Soluciones/química
20.
Photochem Photobiol Sci ; 4(8): 641-6, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16052272

RESUMEN

Structurally controlled zinc porphyrin-anthracene dyads, syn-arranged 1 and anti-arranged 2, were newly synthesized employing a diarylurea linkage, and the excitation energy transfer (EET) from the anthracene to the zinc porphyrin chromophore was investigated by steady-state fluorescence emission spectroscopy as well as fluorescence lifetime measurement, especially focusing on the effect of the chromophoric orientation on the EET. In both of the dyads, intramolecular EET was facilitated upon excitation of the anthracene chromophore (lamda(ex)= 401 nm), and the zinc porphyrin S1-S0 emission (580-720 nm) was enhanced. The EET in the syn-arranged dyad 1 was more efficient than in the anti-arranged 2: the S1-S0 emission in 1 was 1.8 times larger than that in the zinc porphyrin reference compound 3, whereas that in 2 was enhanced by 1.6 times, compared to that in 3. In the fluorescence lifetime measurement, the quiet short-lived component assignable to the EET was observed for the dyads 1 and 2 beyond the analysis limit (<25 ps). The EET rate constants in the dyads 1 and 2 were estimated as not less than 4.0 x 10(10) s-1. However, in the case of 2, the residual long-lived component assigned to the anthracene emission was also observed at 425 nm. These results showed that the syn-arrangement of the zinc porphyrin and anthracene chromophores was more preferred for intramolecular EET to the anti-arrangement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA