Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell Struct Funct ; 48(2): 175-185, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37518064

RESUMEN

Ciliary outer-arm dynein (OAD) consists of heavy chains (HCs), intermediate chains (ICs), and light chains (LCs), of which HCs are the motor proteins that produce force. Studies using the green alga Chlamydomonas have revealed that ICs and LCs form a complex (IC/LC tower) at the base of the OAD tail and play a crucial role in anchoring OAD to specific sites on the microtubule. In this study, we isolated a novel slow-swimming Chlamydomonas mutant deficient in the IC2 protein. This mutation, E279K, is in the third of the seven WD repeat domains. No apparent abnormality was observed in electron microscope observations of axonemes or in SDS-PAGE analyses of dynein subunits. To explore the reason for the lowered motility in this mutant, in vitro microtubule sliding experiments were performed, which revealed that the motor activity of the mutant OAD was lowered. In particular, a large difference was observed between wild type (WT) and the mutant in the microtubule sliding velocity in microtubule bundles formed with the addition of OAD: ~35.3 µm/sec (WT) and ~4.3 µm/sec (mutant). From this and other results, we propose that IC2 in an OAD interacts with the ß HC of the adjacent OAD, and that an OAD-OAD interaction is important for efficient beating of cilia and flagella.Key words: cilia, axoneme, dynein heavy chain, cooperativity.


Asunto(s)
Chlamydomonas , Dineínas , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Axonema/metabolismo , Cilios/metabolismo , Flagelos/metabolismo , Chlamydomonas/genética , Chlamydomonas/metabolismo , Mutación
2.
PLoS Genet ; 16(11): e1009126, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33141819

RESUMEN

Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and a family of proteins containing the PIH1 domain, PIH proteins, are involved in the assembly process. However, the functional differences and relationships between members of this family of proteins remain largely unknown. Using Chlamydomonas reinhardtii as a model, we isolated and characterized two novel Chlamydomonas PIH preassembly mutants, mot48-2 and twi1-1. A new allele of mot48 (ida10), mot48-2, shows large defects in ciliary dynein assembly in the axoneme and altered motility. A second mutant, twi1-1, shows comparatively smaller defects in motility and dynein assembly. A double mutant mot48-2; twi1-1 displays greater reduction in motility and in dynein assembly compared to each single mutant. Similarly, a double mutant twi1-1; pf13 also shows a significantly greater defect in motility and dynein assembly than either parent mutant. Thus, MOT48 (IDA10), TWI1 and PF13 may define different steps, and have partially overlapping functions, in a pathway required for ciliary dynein preassembly. Together, our data suggest the three PIH proteins function in preassembly steps that are both common and unique for different ciliary dyneins.


Asunto(s)
Dineínas Axonemales/metabolismo , Movimiento Celular/genética , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/genética , Proteínas de Plantas/genética , Chlamydomonas reinhardtii , Humanos , Mutación , Proteínas de Plantas/metabolismo
3.
J Biol Chem ; 295(12): 3982-3989, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32014992

RESUMEN

Axonemal dynein is a microtubule-based molecular motor that drives ciliary/flagellar beating in eukaryotes. In axonemal dynein, the outer-arm dynein (OAD) complex, which comprises three heavy chains (α, ß, and γ), produces the main driving force for ciliary/flagellar motility. It has recently been shown that axonemal dynein light chain-1 (LC1) binds to the microtubule-binding domain (MTBD) of OADγ, leading to a decrease in its microtubule-binding affinity. However, it remains unclear how LC1 interacts with the MTBD and controls the microtubule-binding affinity of OADγ. Here, we have used X-ray crystallography and pulldown assays to examine the interaction between LC1 and the MTBD, identifying two important sites of interaction in the MTBD. Solving the LC1-MTBD complex from Chlamydomonas reinhardtii at 1.7 Å resolution, we observed that one site is located in the H5 helix and that the other is located in the flap region that is unique to some axonemal dynein MTBDs. Mutational analysis of key residues in these sites indicated that the H5 helix is the main LC1-binding site. We modeled the ternary structure of the LC1-MTBD complex bound to microtubules based on the known dynein-microtubule complex. This enabled us to propose a structural basis for both formations of the ternary LC1-MTBD-microtubule complex and LC1-mediated tuning of MTBD binding to the microtubule, suggesting a molecular model for how axonemal dynein senses the curvature of the axoneme and tunes ciliary/flagellar beating.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Flagelos/fisiología , Proteínas Algáceas/química , Dineínas Axonemales/química , Dineínas Axonemales/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dineínas/química , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
4.
J Am Chem Soc ; 139(15): 5359-5366, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28320204

RESUMEN

Photoluminescent coordination nanosheets (CONASHs) comprising three-way terpyridine (tpy) ligands and zinc(II) ions are created by allowing the two constitutive components to react with each other at a liquid/liquid interface. Taking advantage of bottom-up CONASHs, or flexibility in organic ligand design and coordination modes, we demonstrate the diversity of the tpy-zinc(II) CONASH in structures and photofunctions. A combination of 1,3,5-tris[4-(4'-2,2':6',2″-terpyridyl)phenyl]benzene (1) and Zn(BF4)2 affords a cationic CONASH featuring the bis(tpy)Zn complex motif (1-Zn), while substitution of the zinc source with ZnSO4 realizes a charge-neutral CONASH with the [Zn2(µ-O2SO2)2(tpy)2] motif [1-Zn2(SO4)2]. The difference stems from the use of noncoordinating (BF4-) or coordinating and bridging (SO42-) anions. The change in the coordination mode alters the luminescence (480 nm blue in 1-Zn; 552 nm yellow in 1-Zn2(SO4)2). The photophysical property also differs in that 1-Zn2(SO4)2 shows solvatoluminochromism, whereas 1-Zn does not. Photoluminescence is also modulated by the tpy ligand structure. 2-Zn contains triarylamine-centered terpyridine ligand 2 and features the bis(tpy)Zn motif; its emission is substantially red-shifted (590 nm orange) compared with that of 1-Zn. CONASHs 1-Zn and 2-Zn possess cationic nanosheet frameworks with counteranions (BF4-), and thereby feature anion exchange capacities. Indeed, anionic xanthene dyes were taken up by these nanosheets, which undergo quasi-quantitative exciton migration from the host CONASH. This series of studies shows tpy-zinc(II) CONASHs as promising potential photofunctional nanomaterials.

5.
Angew Chem Int Ed Engl ; 56(13): 3526-3530, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28240405

RESUMEN

New bis(dipyrrinato)zinc(II) complex micro- and nanosheets containing zinc(II) porphyrin (N2) are synthesized. A liquid/liquid interface method between dipyrrin porphyrin ligand L2 and zinc acetate produces N2 with a large domain size. N2 can be layered quantitatively onto a flat substrate by a modified Langmuir-Schäfer method. N2 deposited on a SnO2 electrode functions as a photoanode for a photoelectric conversion system. The photoresponse of N2 covers the whole visible wavelength range (400-650 nm), with a maximum quantum efficiency of more than twice that of a bis(dipyrrinato)zinc(II) complex nanosheet without porphyrin.

6.
Nature ; 456(7222): 611-6, 2008 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19052621

RESUMEN

Cilia and flagella are highly conserved organelles that have diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia and flagella often result in primary ciliary dyskinesia. However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a new gene, kintoun (ktu), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in primary ciliary dyskinesia patients from two affected families as well as in the pf13 mutant of Chlamydomonas. In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment.


Asunto(s)
Axonema/metabolismo , Cilios/metabolismo , Dineínas/metabolismo , Proteínas de Peces/metabolismo , Oryzias , Proteínas/metabolismo , Animales , Axonema/química , Axonema/genética , Axonema/patología , Chlamydomonas/genética , Chlamydomonas/metabolismo , Cilios/química , Cilios/genética , Cilios/patología , Clonación Molecular , Células Epiteliales/citología , Proteínas de Peces/genética , Genes Recesivos/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/patología , Masculino , Ratones , Datos de Secuencia Molecular , Mutación/genética , Oryzias/embriología , Oryzias/genética , Oryzias/metabolismo , Unión Proteica , Proteínas/genética , Homología de Secuencia de Aminoácido , Motilidad Espermática , Testículo/citología
7.
Zoolog Sci ; 31(10): 633-44, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25284382

RESUMEN

This review outlines the current knowledge of the functional diversity of axonemal dyneins, as revealed by studies with the model organism Chlamydomonas. Axonemal dyneins, which comprise outer and inner dynein arms, power cilia and flagella beating by producing sliding movements between adjacent outer-doublet microtubules. Outer- and inner-arm dyneins have traditionally been considered similar in structure and function. However, recent evidence suggests that they differ rather strikingly in subunit composition, axonemal arrangement, and molecular motor properties. We posit that these arms make up two largely independent motile systems; whereas outer-arm dynein can generate axonemal beating by itself under certain conditions, inner-arm dynein can generate beating only in cooperation with the central pair/radial spokes. This conclusion is supported by genome analyses of various organisms. Outer-arm dynein appears to be particularly important for nodal cilia of mammalian embryos that function for determination of left-right body asymmetry.


Asunto(s)
Dineínas Axonemales/metabolismo , Chlamydomonas/metabolismo , Regulación de la Expresión Génica/fisiología , Animales , Dineínas Axonemales/genética , Chlamydomonas/genética , Flagelos/metabolismo , Movimiento , Mutación
8.
Artículo en Inglés | MEDLINE | ID: mdl-38899546

RESUMEN

Motile cilia have a so-called "9 + 2" structure, which consists of nine doublet microtubules and a central pair apparatus. The central pair apparatus (CA) is thought to interact mechanically with radial spokes and to control the flagellar beating. Recently, the components of the CA have been identified by proteomic and genomic analyses. Still, the mechanism of how the CA contributes to ciliary motility has much to be revealed. Here, we focused on one CA component with a large molecular weight: FAP47, and its relationship with two other CA components with large molecular weight: HYDIN, and CPC1. The analyses of motility of the Chlamydomonas mutants revealed that in contrast to cpc1 or hydin, which swam more slowly than the wild type, fap47 cells displayed wild-type swimming velocity and flagellar beat frequency, yet interestingly, fap47 cells have phototaxis defects and swim straighter than the wild-type cells. Furthermore, the double mutant fap47cpc1 and fap47hydin showed significantly slower swimming than cpc1 and hydin cells, and the motility defect of fap47cpc1 was rescued to the cpc1 level with GFP-tagged FAP47, indicating that the lack of FAP47 makes the motility defect of cpc1 worse. Cryo-electron tomography demonstrated that the fap47 lacks a part of the C1-C2 bridge of CA. Taken together, these observations indicate that FAP47 maintains the structural stiffness of the CA, which is important for flagellar regulation.

9.
Biophys Physicobiol ; 20(1): e200008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234853

RESUMEN

Ciliary bending movements are powered by motor protein axonemal dyneins. They are largely classified into two groups, inner-arm dynein and outer-arm dynein. Outer-arm dynein, which is important for the elevation of ciliary beat frequency, has three heavy chains (α, ß, and γ), two intermediate chains, and more than 10 light chains in green algae, Chlamydomonas. Most of intermediate chains and light chains bind to the tail regions of heavy chains. In contrast, the light chain LC1 was found to bind to the ATP-dependent microtubule-binding domain of outer-arm dynein γ-heavy chain. Interestingly, LC1 was also found to interact with microtubules directly, but it reduces the affinity of the microtubule-binding domain of γ-heavy chain for microtubules, suggesting the possibility that LC1 may control ciliary movement by regulating the affinity of outer-arm dyneins for microtubules. This hypothesis is supported by the LC1 mutant studies in Chlamydomonas and Planaria showing that ciliary movements in LC1 mutants were disordered with low coordination of beating and low beat frequency. To understand the molecular mechanism of the regulation of outer-arm dynein motor activity by LC1, X-ray crystallography and cryo-electron microscopy have been used to determine the structure of the light chain bound to the microtubule-binding domain of γ-heavy chain. In this review article, we show the recent progress of structural studies of LC1, and suggest the regulatory role of LC1 in the motor activity of outer-arm dyneins. This review article is an extended version of the Japanese article, The Complex of Outer-arm Dynein Light Chain-1 and the Microtubule-binding Domain of the Heavy Chain Shows How Axonemal Dynein Tunes Ciliary Beating, published in SEIBUTSU BUTSURI Vol. 61, p. 20-22 (2021).

11.
J Nanobiotechnology ; 8: 23, 2010 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-20868509

RESUMEN

Regulation of cell cycle progression in changing environments is vital for cell survival and maintenance, and different regulation mechanisms based on cell size and cell cycle time have been proposed. To determine the mechanism of cell cycle regulation in the unicellular green algae Chlamydomonas reinhardtii, we developed an on-chip single-cell cultivation system that allows for the strict control of the extracellular environment. We divided the Chlamydomonas cell cycle into interdivision and division phases on the basis of changes in cell size and found that, regardless of the amount of photosynthetically active radiation (PAR) and the extent of illumination, the length of the interdivision phase was inversely proportional to the rate of increase of cell volume. Their product remains constant indicating the existence of an 'interdivision timer'. The length of the division phase, in contrast, remained nearly constant. Cells cultivated under light-dark-light conditions did not divide unless they had grown to twice their initial volume during the first light period. This indicates the existence of a 'commitment sizer'. The ratio of the cell volume at the beginning of the division phase to the initial cell volume determined the number of daughter cells, indicating the existence of a 'mitotic sizer'.

12.
Cell Motil Cytoskeleton ; 66(8): 448-56, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19021242

RESUMEN

How ciliary and flagellar motility is regulated is a challenging problem. The flagellar movement in Chlamydomonas reinhardtii is in part regulated by phosphorylation of a 138 kD intermediate chain (IC138) of inner arm dynein f (also called I1). In the present study, we found that the axoneme of mutants lacking dynein f lacks a novel protein having ankyrin repeat motifs, registered as FAP120 in the flagellar proteome database. FAP120 is also missing or decreased in the axonemes of bop5, a mutant that has a mutation in the structural gene of IC138 but assembles the dynein f complex. Intriguingly, the amounts of FAP120 in the axonemes of different alleles of bop5 and several dynein f-lacking mutants roughly parallel their contents of IC138. These results suggest a weak but stoichiometric interaction between FAP120 and IC138. We propose that FAP120 functions in the regulatoryprocess as part of a protein complex involving IC138. Cell Motil. Cytoskeleton 2008. (c) 2008 Wiley-Liss, Inc.


Asunto(s)
Repetición de Anquirina , Chlamydomonas reinhardtii/metabolismo , Dineínas/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Axonema/metabolismo , Chlamydomonas reinhardtii/fisiología , Cilios/metabolismo , Electroforesis en Gel de Poliacrilamida , Immunoblotting , Microscopía Fluorescente , Mutación , Unión Proteica , Proteínas Protozoarias/genética
13.
Sci Rep ; 10(1): 2072, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029813

RESUMEN

The beating of eukaryotic flagella (also called cilia) depends on the sliding movements between microtubules powered by dynein. In cilia/flagella of most organisms, microtubule sliding is regulated by the internal structure of cilia comprising the central pair of microtubules (CP) and radial spokes (RS). Chlamydomonas paralyzed-flagella (pf) mutants lacking CP or RS are non-motile under physiological conditions. Here, we show that high hydrostatic pressure induces vigorous flagellar beating in pf mutants. The beating pattern at 40 MPa was similar to that of wild type at atmospheric pressure. In addition, at 80 MPa, flagella underwent an asymmetric-to-symmetric waveform conversion, similar to the one triggered by an increase in intra-flagella Ca2+ concentration during cell's response to strong light. Thus, our study establishes that neither beating nor waveform conversion of cilia/flagella requires the presence of CP/RS in the axoneme.


Asunto(s)
Movimiento Celular/fisiología , Chlamydomonas/fisiología , Cilios/fisiología , Chlamydomonas/citología , Presión Hidrostática , Microtúbulos/genética , Microtúbulos/metabolismo , Mutación
14.
Elife ; 92020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32151315

RESUMEN

Microtubules (MTs) are hollow cylinders made of tubulin, a GTPase responsible for essential functions during cell growth and division, and thus, key target for anti-tumor drugs. In MTs, GTP hydrolysis triggers structural changes in the lattice, which are responsible for interaction with regulatory factors. The stabilizing GTP-cap is a hallmark of MTs and the mechanism of the chemical-structural link between the GTP hydrolysis site and the MT lattice is a matter of debate. We have analyzed the structure of tubulin and MTs assembled in the presence of fluoride salts that mimic the GTP-bound and GDP•Pi transition states. Our results challenge current models because tubulin does not change axial length upon GTP hydrolysis. Moreover, analysis of the structure of MTs assembled in the presence of several nucleotide analogues and of taxol allows us to propose that previously described lattice expansion could be a post-hydrolysis stage involved in Pi release.


Asunto(s)
Microtúbulos/química , Modelos Moleculares , Conformación Molecular , Microscopía por Crioelectrón , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Enlace de Hidrógeno , Microtúbulos/metabolismo , Relación Estructura-Actividad , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
15.
Biochemistry ; 48(12): 2710-3, 2009 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-19222235

RESUMEN

The dynein motor proteins interact with microtubules at the distal end of an unusual 12-15 nm stalk, which communicates with the sites for nucleotide hydrolysis and microtubule binding in a cyclical, bidirectional manner. Here, we report that the stalk shaft of rat cytoplasmic dynein is an antiparallel alpha-helical coiled coil, the stability of which is markedly altered by changes at its proximal and distal ends, consistent with a structure capable of rapid, cyclical rearrangement during the dynein cross-bridge cycle.


Asunto(s)
Dineínas/química , Animales , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Ratas
16.
Eukaryot Cell ; 7(1): 154-61, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17981992

RESUMEN

Cilia and flagella have multiple dyneins in their inner and outer arms. Chlamydomonas inner-arm dynein contains at least seven major subspecies (dynein a to dynein g), of which all but dynein f (also called dynein I1) are the single-headed type that are composed of a single heavy chain, actin, and either centrin or a 28-kDa protein (p28). Dynein d was found to associate with two additional proteins of 38 kDa (p38) and 44 kDa (p44). Following the characterization of the p38 protein (R. Yamamoto, H. A. Yanagisawa, T. Yagi, and R. Kamiya, FEBS Lett. 580:6357-6360, 2006), we have identified p44 as a novel component of dynein d by using an immunoprecipitation approach. p44 is present along the length of the axonemes and is diminished, but not absent, in the ida4 and ida5 mutants, both lacking this dynein. In the ida5 axoneme, p44 and p38 appear to form a complex, suggesting that they constitute the docking site of dynein d on the outer doublet. p44 has potential homologues in other ciliated organisms. For example, the mouse homologue of p44, NYD-SP14, was found to be strongly expressed in tissues with motile cilia and flagella. These results suggest that inner-arm dynein d and its subunit organization are widely conserved.


Asunto(s)
Proteínas Algáceas/genética , Axonema/enzimología , Chlamydomonas reinhardtii/enzimología , Dineínas/química , Proteínas Protozoarias/química , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Southern Blotting , Movimiento Celular , Chlamydomonas reinhardtii/genética , Cilios/metabolismo , Secuencia Conservada , Dineínas/genética , Dineínas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Técnica del Anticuerpo Fluorescente , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Immunoblotting , Ratones , Datos de Secuencia Molecular , Subunidades de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Conejos , Homología de Secuencia de Aminoácido
17.
Eukaryot Cell ; 7(7): 1136-45, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18487347

RESUMEN

The outer dynein arm of Chlamydomonas flagella contains three heavy chains (alpha, beta, and gamma), each of which exhibits motor activity. How they assemble and cooperate is of considerable interest. Here we report the isolation of a novel mutant, oda2-t, whose gamma heavy chain is truncated at about 30% of the sequence. While the previously isolated gamma chain mutant oda2 lacks the entire outer arm, oda2-t retains outer arms that contain alpha and beta heavy chains, suggesting that the N-terminal sequence (corresponding to the tail region) is necessary and sufficient for stable outer-arm assembly. Thin-section electron microscopy and image analysis localize the gamma heavy chain to a basal region of the outer-arm image in the axonemal cross section. The motility of oda2-t is lower than that of the wild type and oda11 (lacking the alpha heavy chain) but higher than that of oda2 and oda4-s7 (lacking the motor domain of the beta heavy chain). Thus, the outer-arm dynein lacking the gamma heavy-chain motor domain is partially functional. The availability of mutants lacking individual heavy chains should greatly facilitate studies on the structure and function of the outer-arm dynein.


Asunto(s)
Chlamydomonas/enzimología , Dineínas/metabolismo , Flagelos/enzimología , Mutación , Proteínas Protozoarias/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Western Blotting , Chlamydomonas/química , Chlamydomonas/genética , Chlamydomonas/fisiología , Dineínas/química , Dineínas/genética , Dineínas/ultraestructura , Flagelos/química , Flagelos/genética , Flagelos/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/ultraestructura
18.
Biochim Biophys Acta Mol Cell Res ; 1866(2): 285-295, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30458214

RESUMEN

WDR54 is a member of the WD40 repeat (WDR) domain-containing protein family that was recently identified as a novel oncogene in colorectal cancer. However, the molecular mechanism of WDR54 and its functional association with other molecules related to tumor cell growth are unknown. Here, we show that WDR54 can be cross-linked by the action of transglutaminase (TG) 2, which enhances the activation of EGF receptor-mediated signaling pathway. The most carboxyl-terminal WD domain was required for cross-linking. In addition, lysine 280 in WDR54, also in this WD domain, was an important residue for both cross-linking and ubiquitination. Cross-linked WDR54 was found in vesicles aggregated at the plasma membrane. The activated EGF receptor was co-localized with this vesicle, and the internalization of the EGF receptor into the cytosol was sustained. As a result, Erk activity in response to EGF stimulation was enhanced. Furthermore, the growth of the cells lacking WDR54 expression generated by genome editing was delayed compared with that in wild-type cells. Because TG2 is also has been proposed to activate the EGF receptor-signaling and proliferation of tumor cells, WDR54 might have a functional relationship with the EGF receptor and TG2. Our study on the mechanism of biological function of WDR54 may provide rationale for the design and development of a cancer drug based on inhibiting the post-translational modification of this oncogene product.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al GTP/metabolismo , Transglutaminasas/metabolismo , Animales , Proteínas de Arabidopsis/fisiología , Células COS , Línea Celular Tumoral , Membrana Celular/metabolismo , Proliferación Celular/fisiología , Chlorocebus aethiops , Receptores ErbB/metabolismo , Proteínas de Unión al GTP/fisiología , Células HEK293 , Humanos , Fosforilación/fisiología , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/fisiología , Transglutaminasas/genética , Transglutaminasas/fisiología , Ubiquitinación
19.
J Cell Biol ; 217(12): 4164-4183, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30297389

RESUMEN

Kinesin-1, the founding member of the kinesin superfamily of proteins, is known to use only a subset of microtubules for transport in living cells. This biased use of microtubules is proposed as the guidance cue for polarized transport in neurons, but the underlying mechanisms are still poorly understood. Here, we report that kinesin-1 binding changes the microtubule lattice and promotes further kinesin-1 binding. This high-affinity state requires the binding of kinesin-1 in the nucleotide-free state. Microtubules return to the initial low-affinity state by washing out the binding kinesin-1 or by the binding of non-hydrolyzable ATP analogue AMPPNP to kinesin-1. X-ray fiber diffraction, fluorescence speckle microscopy, and second-harmonic generation microscopy, as well as cryo-EM, collectively demonstrated that the binding of nucleotide-free kinesin-1 to GDP microtubules changes the conformation of the GDP microtubule to a conformation resembling the GTP microtubule.


Asunto(s)
Cinesinas , Microtúbulos , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/farmacología , Animales , Transporte Biológico Activo , Chlorocebus aethiops , Perros , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Cinesinas/química , Cinesinas/metabolismo , Células de Riñón Canino Madin Darby , Microtúbulos/química , Microtúbulos/metabolismo , Células Vero
20.
FEBS Lett ; 580(27): 6357-60, 2006 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-17094970

RESUMEN

To elucidate the subunit composition of axonemal inner-arm dynein, we examined a 38 kDa protein (p38) co-purified with a Chlamydomonas inner arm subspecies, dynein d. We found it is a novel protein conserved among a variety of organisms with motile cilia and flagella. Immunoprecipitation using specific antibody verified its association with a heavy chain, actin and a previously identified light chain (p28). Unexpectedly, mutant axonemes lacking dynein d and other dyneins retained reduced amounts of p38. This finding suggests that p38 is involved in the docking of dynein d to specific loci.


Asunto(s)
Proteínas Algáceas/genética , Chlamydomonas/genética , Dineínas/genética , Proteínas Protozoarias/genética , Proteínas Algáceas/metabolismo , Animales , Chlamydomonas/metabolismo , Cilios/genética , Cilios/metabolismo , Dineínas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA