Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892174

RESUMEN

Foodborne diseases can be attributed not only to contamination with bacterial or fungal pathogens but also their associated toxins. Thus, to maintain food safety, innovative decontamination techniques for toxins are required. We previously demonstrated that an atmospheric-pressure dielectric-barrier discharge (APDBD) plasma generated by a roller conveyer plasma device is effective at inactivating bacteria and fungi in foods. Here, we have further examined whether the roller conveyer plasma device can be used to degrade toxins produced by foodborne bacterial pathogens, including aflatoxin, Shiga toxins (Stx1 and Stx2), enterotoxin B and cereulide. Each toxin was spotted onto an aluminum plate, allowed to dry, and then treated with APDBD plasma applied by the roller conveyer plasma device for different time periods. Assessments were conducted using a competitive enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results demonstrate a significant time-dependent decrease in the levels of these toxins. ELISA showed that aflatoxin B1 concentrations were reduced from 308.6 µg/mL to 74.4 µg/mL within 1 min. For Shiga toxins, Stx1 decreased from 913.8 µg/mL to 65.1 µg/mL, and Stx2 from 2309.0 µg/mL to 187.6 µg/mL within the same time frame (1 min). Enterotoxin B levels dropped from 62.67 µg/mL to 1.74 µg/mL at 15 min, and 1.43 µg/mL at 30 min, but did not display a significant decrease within 5 min. LC-MS/MS analysis verified that cereulide was reduced to below the detection limit following 30 min of APDBD plasma treatment. Taken together, these findings highlight that a range of foodborne toxins can be degraded by a relatively short exposure to plasma generated by an APDBD using a roller conveyer device. This technology offers promising advancements in food safety, providing a novel method to alleviate toxin contamination in the food processing industry.


Asunto(s)
Presión Atmosférica , Espectrometría de Masas en Tándem , Enterotoxinas , Depsipéptidos/química , Microbiología de Alimentos/métodos , Cromatografía Liquida/métodos , Enfermedades Transmitidas por los Alimentos/prevención & control , Enfermedades Transmitidas por los Alimentos/microbiología , Ensayo de Inmunoadsorción Enzimática , Contaminación de Alimentos/análisis , Gases em Plasma/química , Aflatoxina B1
2.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409044

RESUMEN

Plasma biology is a cutting-edge research field that involves plasma technology [...].


Asunto(s)
Biología , Tecnología
3.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34064054

RESUMEN

It is now more than 90 years since Irving Langmuir used the technical term "plasma" to describe an ionized gas [...].


Asunto(s)
Plasma/metabolismo , Biología/métodos , Humanos , Cicatrización de Heridas/fisiología
4.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640211

RESUMEN

Recent studies have shown that plasma can efficiently inactivate microbial pathogens such as bacteria, fungi, and viruses in addition to degrading toxins. Moreover, this technology is effective at inactivating pathogens on the surface of medical and dental devices, as well as agricultural products. The current practical applications of plasma technology range from sterilizing therapeutic medical devices to improving crop yields, as well as the area of food preservation. This review introduces recent advances and future perspectives in plasma technology, especially in applications related to disinfection and sterilization. We also introduce the latest studies, mainly focusing on the potential applications of plasma technology for the inactivation of microorganisms and the degradation of toxins.


Asunto(s)
Desinfección/métodos , Plasma/fisiología , Esterilización/métodos , Agricultura , Equipos y Suministros/microbiología , Conservación de Alimentos , Humanos
5.
AMB Express ; 11(1): 16, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33423150

RESUMEN

Efficient methods to achieve the safe decontamination of agricultural products are needed. Here, we investigated the decontamination of citrus fruits to test the antifungal potential of a novel non-thermal gas plasma apparatus, termed a roller conveyer plasma instrument. This instrument generates an atmospheric pressure dielectric barrier discharge (APDBP) plasma on a set of rollers. Penicillium venetum was spotted onto the surface of the fruit or pericarps, as well as an aluminium plate to act as a control, before performing the plasma treatment. The results showed that viable cell number of P. venetum decreased with a decimal reduction time (D value or estimated treatment time required to reduce viable cell number by 90%) of 0.967 min on the aluminium plate, 2.90 min and 1.88 min on the pericarps of 'Kiyomi' (Citrus unshiu × C. sinensis) and 'Kawano-natsudaidai' (C. natsudaidai) respectively, and 2.42 min on the surface of 'Unshu-mikan' (C. unshiu). These findings confirmed a fungicidal effect of the plasma not only on an abiotic surface (aluminium plate) but also on a biotic surface (citrus fruit). Further development of the instrument by combining sorting systems with the plasma device promises an efficient means of disinfecting citrus fruits during food processing.

6.
Mol Med Rep ; 15(1): 396-402, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27909733

RESUMEN

Gas plasma, produced by a short high­voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min). Quantitative polymerase chain reaction and enzyme­linked immunosorbent assays further indicated that nitrogen gas plasma treatment for 15 min decreased the level of intact genomic DNA and increased the level of 8-hydroxy-2'-deoxyguanosine, a major product of DNA oxidation. Three potential inactivation factors were generated during operation of the gas plasma instrument: Heat, longwave ultraviolet-A and oxidative stress (production of hydrogen peroxide, nitrite and nitrate). Treatment of the spores with hydrogen peroxide (3x2­4%) effectively inactivated the bacteria, whereas heat treatment (100˚C), exposure to UV-A (75­142 mJ/cm2) and 4.92 mM peroxynitrite (•ONOO­), which is decomposed into nitrite and nitrate, did not. The results of the present study suggest the gas plasma treatment inactivates bacterial spores primarily by generating hydrogen peroxide, which contributes to the oxidation of the host genomic DNA.


Asunto(s)
Bacterias/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Geobacillus stearothermophilus/efectos de los fármacos , Nitrógeno/farmacología , Gases em Plasma/farmacología , Esporas Bacterianas/efectos de los fármacos , Esterilización/métodos , 8-Hidroxi-2'-Desoxicoguanosina , Bacterias/genética , ADN Bacteriano/genética , Desoxiguanosina/análogos & derivados , Desoxiguanosina/genética , Geobacillus stearothermophilus/citología , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Calor , Peróxido de Hidrógeno/farmacología , Viabilidad Microbiana/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Esporas Bacterianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA