Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 283(35): 23692-700, 2008 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-18599480

RESUMEN

Mechanisms of transcriptional repression are important during cell differentiation. Mammalian heterochromatin protein 1 isoforms HP1alpha, HP1beta, and HP1gamma play important roles in the regulation of chromatin structure and function. We explored the possibility of different roles for the three HP1 isoforms in an integrated system, skeletal muscle terminal differentiation. In this system, terminal differentiation is initiated by the transcription factor MyoD, whose target genes remain mainly silent until myoblasts are induced to differentiate. Here we show that HP1alpha and HP1beta isoforms, but not HP1gamma, interact with MyoD in myoblasts. This interaction is direct, as shown using recombinant proteins in vitro. A gene reporter assay revealed that HP1alpha and HP1beta, but not HP1gamma, inhibit MyoD transcriptional activity, suggesting a model in which MyoD could serve as a bridge between nucleosomes and chromatin-binding proteins such as HDACs and HP1. Chromatin immunoprecipitation assays show a preferential recruitment of HP1 proteins on MyoD target genes in proliferating myoblasts. Finally, modulation of HP1 protein level impairs MyoD target gene expression and muscle terminal differentiation. Together, our data show a nonconventional interaction between HP1 and a tissue-specific transcription factor, MyoD. In addition, they strongly suggest that HP1 isoforms play important roles during muscle terminal differentiation in an isoform-dependent manner.


Asunto(s)
Diferenciación Celular/fisiología , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica/fisiología , Proteína MioD/metabolismo , Mioblastos Esqueléticos/metabolismo , Proliferación Celular , Cromatina/química , Cromatina/genética , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Células HeLa , Humanos , Proteína MioD/química , Proteína MioD/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Expert Opin Ther Targets ; 10(6): 923-34, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17105377

RESUMEN

Skeletal muscle differentiation is a multistep process, which begins with the commitment of multi-potent mesodermal precursor cells to the muscle fate. These committed cells, the myoblasts, then differentiate and fuse into multinucleated myotubes. The final step of muscle differentiation is the maturation of differentiated myotubes into myofibres. Skeletal muscle development requires the coordinated expression of various transcription factors like the members of the myocyte enhancer binding-factor 2 family and the muscle regulatory factors. These transcription factors, in collaboration with chromatin-remodelling complexes, act in specific combinations and within complex transcriptional regulatory networks to achieve skeletal myogenesis. Additional factors involved in the epigenetic regulation of this process continue to be discovered. In this review, the authors discuss the recent discoveries in the epigenetic regulation of myogenesis. They also summarise the role of chromatin-modifying enzymes regulating muscle gene expression. These different factors are often involved in multiple steps of muscle differentiation and have redundant activities. Altogether, the recent findings have allowed a better understanding of myogenesis and have raised new hopes for the pharmacological development of new therapies aimed at muscle degeneration diseases, such as myotonic dystrophy or Duchenne muscular dystrophy.


Asunto(s)
Cromatina/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Animales , Cromatina/química , Cromatina/genética , Humanos , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/fisiología , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos
3.
EMBO J ; 23(3): 605-15, 2004 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-14765126

RESUMEN

The Rb/E2F complex represses S-phase genes both in cycling cells and in cells that have permanently exited from the cell cycle and entered a terminal differentiation pathway. Here we show that S-phase gene repression, which involves histone-modifying enzymes, occurs through distinct mechanisms in these two situations. We used chromatin immunoprecipitation to show that methylation of histone H3 lysine 9 (H3K9) occurs at several Rb/E2F target promoters in differentiating cells but not in cycling cells. Furthermore, phenotypic knock-down experiments using siRNAs showed that the histone methyltransferase Suv39h is required for histone H3K9 methylation and subsequent repression of S-phase gene promoters in differentiating cells, but not in cycling cells. These results indicate that the E2F target gene permanent silencing mechanism that is triggered upon terminal differentiation is distinct from the transient repression mechanism in cycling cells. Finally, Suv39h-depleted myoblasts were unable to express early or late muscle differentiation markers. Thus, appropriately timed H3K9 methylation by Suv39h seems to be part of the control switch for exiting the cell cycle and entering differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Silenciador del Gen/fisiología , Histonas/metabolismo , Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Fase S/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción E2F , Células HeLa , Humanos , Ratones , Mioblastos/fisiología , Células 3T3 NIH , Regiones Promotoras Genéticas/fisiología , ARN Interferente Pequeño , Proteína de Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA