Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Biol Chem ; 286(14): 12796-802, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21330363

RESUMEN

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) plays an important role in DNA double-strand break (DSB) repair as the underlying mechanism of the non-homologous end joining pathway. When DSBs occur, DNA-PKcs is rapidly phosphorylated at both the Thr-2609 and Ser-2056 residues, and such phosphorylations are critical for DSB repair. In this study we report that, in addition to responding to DSBs, DNA-PKcs is activated and phosphorylated in normal cell cycle progression through mitosis. Mitotic induction of DNA-PKcs phosphorylation is closely associated with the spindle apparatus at centrosomes and kinetochores. Furthermore, depletion of DNA-PKcs protein levels or inhibition of DNA-PKcs kinase activity results in the delay of mitotic transition because of chromosome misalignment. These results demonstrate for the first time that DNA-PKcs, in addition to its role in DSB repair, is a critical regulator of mitosis and could modulate microtubule dynamics in chromosome segregation.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Proteína Quinasa Activada por ADN/metabolismo , Mitosis/efectos de los fármacos , Western Blotting , Células Cultivadas , Segregación Cromosómica/genética , Segregación Cromosómica/fisiología , Proteína Quinasa Activada por ADN/genética , Citometría de Flujo , Células HCT116 , Células HeLa , Humanos , Immunoblotting , Microtúbulos/metabolismo , Mitosis/genética , Nocodazol/farmacología , Fosforilación/efectos de los fármacos
2.
DNA Repair (Amst) ; 91-92: 102872, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32502756

RESUMEN

The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células A549 , Línea Celular , Aberraciones Cromosómicas , ADN/metabolismo , ADN/efectos de la radiación , Humanos , Transferencia Lineal de Energía , Tolerancia a Radiación , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Rayos X
3.
Mol Cell Biol ; 26(20): 7520-8, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16908529

RESUMEN

Phosphorylation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) upon ionizing radiation (IR) is essential for cellular radioresistance and nonhomologous-end-joining-mediated DNA double-strand break repair. In addition to IR induction, we have previously shown that DNA-PKcs phosphorylation is increased upon camptothecin treatment, which induces replication stress and replication-associated double-strand breaks. To clarify the involvement of DNA-PKcs in this process, we analyzed DNA-PKcs phosphorylation in response to UV irradiation, which causes replication stress and activates ATR (ATM-Rad3-related)/ATM (ataxia-telangiectasia mutated) kinases in a replication-dependent manner. Upon UV irradiation, we observed a rapid DNA-PKcs phosphorylation at T2609 and T2647, but not at S2056, distinct from that induced by IR. UV-induced DNA-PKcs phosphorylation occurs specifically only in replicating cells and is dependent on ATR kinase. Inhibition of ATR activity via caffeine, a dominant-negative kinase-dead mutant, or RNA interference led to the attenuation of UV-induced DNA-PKcs phosphorylation. Furthermore, DNA-PKcs associates with ATR in vivo and is phosphorylated by ATR in vitro, suggesting that DNA-PKcs could be the direct downstream target of ATR. Taken together, these results strongly suggest that DNA-PKcs is required for the cellular response to replication stress and might play an important role in the repair of stalled replication forks.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Replicación del ADN/efectos de la radiación , Proteína Quinasa Activada por ADN/metabolismo , ADN/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Dominio Catalítico , Proteínas de Ciclo Celular/genética , Células Cultivadas , Daño del ADN/efectos de la radiación , Reparación del ADN , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Fosforilación/efectos de la radiación , Fosfotreonina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Fase S/genética , Fase S/efectos de la radiación , Proteínas Supresoras de Tumor/metabolismo
4.
Int J Part Ther ; 2(3): 439-446, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-31772954

RESUMEN

The DNA double-strand break (DSB) is the most deleterious of the ionizing radiation-induced DNA damages. Two major repair pathways for DSBs have been well studied, nonhomologous end-joining and homologous recombination. It is known that high linear energy transfer radiation, such as heavy ion beams, induces complex DSBs with clustered damages at the end and that, as a result, the efficiency of nonhomologous end-joining in repairing these DSBs is diminished. We have shown that more than 80% of complex DSBs in S/G2 human cells are subjected to DNA end resection, an early step in homologous recombination to generate single-strand DNA. Furthermore, recent work, including ours, revealed that a subpopulation of human G1 cells exhibit resection activity following ionizing radiation, which is dependent on CtIP, as in other cell cycle phases, and also dependent on the complexity of the DSB. Collectively, this recent progress indicates that the complexity of the DSB structure drastically enhances end resection, with CtIP being a significant factor required for complex DSB repair throughout the cell cycle. We further revealed that the ATR pathway, which is activated by end resection, plays a pivotal role in regulating early G2/M arrest in ATM-deficient cells exposed to high linear energy transfer ion beams. This suggests that the complexity of the DSB also influences the choice of the signaling pathway via the enhanced resection. Additionally, we discuss a possibility that CtIP has an additional function (or functions) after the initiation of resection. In conclusion, new findings and insight are pivotal to allow innovative progress in heavy ion-particle therapy by shedding light on the whole response at the molecular level in cells exposed to heavy ion beams.

5.
Oncotarget ; 7(1): 46-65, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26695548

RESUMEN

Faithful and complete genome replication in human cells is essential for preventing the accumulation of cancer-promoting mutations. WRN, the protein defective in Werner syndrome, plays critical roles in preventing replication stress, chromosome instability, and tumorigenesis. Herein, we report that ATR-mediated WRN phosphorylation is needed for DNA replication and repair upon replication stress. A serine residue, S1141, in WRN is phosphorylated in vivo by the ATR kinase in response to replication stress. ATR-mediated WRN S1141 phosphorylation leads to ubiquitination of WRN, facilitating the reversible interaction of WRN with perturbed replication forks and subsequent degradation of WRN. The dynamic interaction between WRN and DNA is required for the suppression of new origin firing and Rad51-dependent double-stranded DNA break repair. Significantly, ATR-mediated WRN phosphorylation is critical for the suppression of chromosome breakage during replication stress. These findings reveal a unique role for WRN as a modulator of DNA repair, replication, and recombination, and link ATR-WRN signaling to the maintenance of genome stability.


Asunto(s)
Replicación del ADN , Exodesoxirribonucleasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , RecQ Helicasas/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Sitios de Unión/genética , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Daño del ADN , Reparación del ADN , Exodesoxirribonucleasas/genética , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Microscopía Confocal , Fosforilación , RecQ Helicasas/genética , Serina/genética , Serina/metabolismo , Helicasa del Síndrome de Werner
6.
Mutat Res ; 771: 36-44, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25771978

RESUMEN

Homologous recombination (HR) is a major repair pathway for DNA double strand breaks (DSBs), and end resection, which generates a 3'-single strand DNA tail at the DSB, is an early step in the process. Resection is initiated by the Mre11 nuclease together with CtIP. Here, we describe novel characteristics of CtIP at DSBs. At early times following exposure of human cells to ionizing radiation, CtIP localized to the DSB, became hyperphosphorylated and formed foci in an ATM-dependent manner. At later times, when the initiation of resection had occurred, CtIP foci persist but CtIP is maintained in a hypophosphorylated state, which is dependent on ATM and ATR. Exposure to cycloheximide revealed that CtIP turns over at DSB sites downstream of resection. Our findings provide strong evidence that CtIP is continuously recruited to DSBs downstream of both the initiation and extension step of resection, strongly suggesting that CtIP has functions in addition to promoting the initiation of resection during HR.


Asunto(s)
Proteínas Portadoras/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Proteínas Nucleares/metabolismo , Reparación del ADN por Recombinación/efectos de la radiación , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Proteínas Portadoras/genética , Cicloheximida/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Células HeLa , Humanos , Proteína Homóloga de MRE11 , Proteínas Nucleares/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Fosforilación/efectos de la radiación , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Transporte de Proteínas/efectos de la radiación , Reparación del ADN por Recombinación/efectos de los fármacos , Reparación del ADN por Recombinación/genética , Rayos X/efectos adversos
7.
Radiat Oncol ; 10: 175, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26286029

RESUMEN

BACKGROUND: High linear energy transfer (LET) radiation such as carbon ion particles is successfully used for treatment of solid tumors. The reason why high LET radiation accomplishes greater tumor-killing than X-rays is still not completely understood. One factor would be the clustered or complex-type DNA damages. We previously reported that complex DNA double-strand breaks produced by high LET radiation enhanced DNA end resection, and this could lead to higher kinase activity of ATR protein recruited to RPA-coated single-stranded DNA. Although the effect of ATR inhibition on cells exposed to low LET gamma-rays has recently been reported, little is known regarding the effect of ATR inhibitor on cells treated with high LET radiation. The purpose of this study is to investigate the effects of the ATR inhibitor VE-821 in human tumor and normal cells irradiated with high LET carbon ions. FINDINGS: HeLa, U2OS, and 1BR-hTERT (normal) cells were pre-treated with 1 µM VE-821 for 1 hour and irradiated with either high LET carbon ions or X-rays. Cell survival, cell cycle distribution, cell growth, and micronuclei formation were evaluated. VE-821 caused abrogation of G2/M checkpoint and forced irradiated cells to divide into daughter cells. We also found that carbon ions caused a higher number of multiple micronuclei than X-rays, leading to decreased cell survival in tumor cells when treated with VE-821, while the survival of irradiated normal cells were not significantly affected by this inhibitor. CONCLUSIONS: ATR inhibitor would be an effective tumor radiosensitizer with carbon ion irradiation.


Asunto(s)
Proliferación Celular/efectos de la radiación , Quimioradioterapia/métodos , Pirazinas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Sulfonas/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Ciclo Celular/efectos de los fármacos , Ciclo Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Radioterapia de Iones Pesados , Humanos , Transferencia Lineal de Energía
8.
DNA Repair (Amst) ; 25: 72-83, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25497328

RESUMEN

DNA double strand break (DSB) repair pathway choice following ionizing radiation (IR) is currently an appealing research topic, which is still largely unclear. Our recent paper indicated that the complexity of DSBs is a critical factor that enhances DNA end resection. It has been well accepted that the RPA-coated single strand DNA produced by resection is a signaling structure for ATR activation. Therefore, taking advantage of high linear energy transfer (LET) radiation to effectively produce complex DSBs, we investigated how the complexity of DSB influences the function of ATR pathway on the G2/M checkpoint regulation. Human skin fibroblast cells with or without ATM were irradiated with X rays or heavy ion particles, and dual-parameter flow cytometry was used to quantitatively assess the mitotic entry at early period post radiation by detecting the cells positive for phosphor histone H3. In ATM-deficient cells, ATR pathway played a pivotal role and functioned in a dose- and LET-dependent way to regulate the early G2/M arrest even as low as 0.2Gy for heavy ion radiation, which indicated that ATR pathway could be rapidly activated and functioned in an ATM-independent, but DSB complexity-dependent manner following exposure to IR. Furthermore, ATR pathway also functioned more efficiently in ATM-proficient cells to block G2 to M transition at early period of particle radiation exposure. Accordingly, in contrast to ATM inhibitor, ATR inhibitor had a more effective radiosensitizing effect on survival fraction following heavy ion beams as compared with X ray radiation. Taken together, our results reveal that the complexity of DSBs is a crucial factor for the activation of ATR pathway for G2/M checkpoint regulation, and ATM-dependent end resection is not essential for the activation.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Roturas del ADN de Doble Cadena , ADN/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Radiación Ionizante , Transducción de Señal , Proteínas de la Ataxia Telangiectasia Mutada/genética , Células Cultivadas , ADN/efectos de la radiación , Reparación del ADN por Unión de Extremidades , Fase G2/efectos de la radiación , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Transferencia Lineal de Energía , Fosforilación , Reparación del ADN por Recombinación
9.
Int J Radiat Biol ; 90(12): 1125-32, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24882391

RESUMEN

PURPOSE: To obtain human glioblastoma cells A172 expressing stem cell-related protein and comparison of radiosensitivity in these cells with X-rays and carbon beam. METHODS: Human monolayer-type A172 glioblastoma cells were maintained in normal medium with 10% bovine serum. In order to obtain sphere-type A172 cells the medium was replaced with serum-free medium supplemented with growth factors. Both types of A172 cells were irradiated with either X-rays or carbon ion beams and their radiosensitivity was evaluated. RESULTS: Serum-free medium induced expression of stem cell-related proteins in A172 cells along with the neurosphere-like appearance. These sphere-type cells were found resistant to both X-rays and carbon ion beams. Phosphorylation of histone H2A family member X persisted for a longer period in the cells exposed to carbon ion beams than in those exposed to X-rays and it disappeared quicker in the sphere type than in the monolayer type. Relative radioresistance of the sphere type cells was smaller for carbon ion beams than for X-rays. CONCLUSIONS: We demonstrated that glioblastoma A172 cells with induced stem cell-related proteins turned resistant to irradiation. Accelerated heavy ion particles may have advantage over X-rays in overcoming the tumor resistance due to cell stemness.


Asunto(s)
Carbono/farmacología , Glioblastoma/patología , Radioterapia de Iones Pesados , Terapia por Rayos X , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , ADN/biosíntesis , ADN/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de la radiación , Factores de Crecimiento Endotelial/farmacología , Factores de Crecimiento de Fibroblastos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/efectos de la radiación , Tolerancia a Radiación/efectos de los fármacos , Tolerancia a Radiación/efectos de la radiación
10.
J Radiat Res ; 55(1): 75-83, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23955054

RESUMEN

Ionizing radiation is applied as the standard treatment for glioblastoma multiforme (GBM). However, radiotherapy remains merely palliative, not curative, because of the existence of glioma stem cells (GSCs), which are regarded as highly radioresistant to low linear-energy-transfer (LET) photons. Here we analyzed whether or not high-LET particles can overcome the radioresistance of GSCs. Glioma stem-like cells (GSLCs) were induced from the GBM cell line A172 in stem cell culture medium. The phenotypes of GSLCs and wild-type cells were confirmed using stem cell markers. These cells were irradiated with (60)Co gamma rays or reactor neutron beams. Under neutron-beam irradiation, high-LET proton particles can be produced through elastic scattering or nitrogen capture reaction. Radiosensitivity was assessed by a colony-forming assay, and the DNA double-strand breaks (DSBs) were assessed by a histone gamma-H2AX focus detection assay. In stem cell culture medium, GSLCs could form neurosphere-like cells and express neural stem cell markers (Sox2 and Musashi) abundantly in comparison with their parental cells. GSLCs were significantly more radioresistant to gamma rays than their parental cells, but neutron beams overcame this resistance. There were significantly fewer gamma-H2AX foci in the A172 GSLCs 24 h after irradiation with gamma rays than in their parental cultured cells, while there was no apparent difference following neutron-beam irradiation. High-LET radiation can overcome the radioresistance of GSLCs by producing unrepairable DNA DSBs. High-LET radiation therapy might have the potential to overcome GBM's resistance to X-rays in a clinical setting.


Asunto(s)
Glioblastoma/fisiopatología , Glioblastoma/radioterapia , Transferencia Lineal de Energía/efectos de la radiación , Células Madre Neoplásicas/fisiología , Células Madre Neoplásicas/efectos de la radiación , Tolerancia a Radiación/efectos de la radiación , Línea Celular Tumoral , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Glioblastoma/patología , Humanos , Células Madre Neoplásicas/patología , Dosis de Radiación
11.
DNA Repair (Amst) ; 12(11): 936-46, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24041488

RESUMEN

DNA double strand breaks (DSBs) induced by ionizing radiation (IR) are deleterious damages. Two major pathways repair DSBs in human cells, DNA non-homologous end-joining (NHEJ) and homologous recombination (HR). It has been suggested that the balance between the two repair pathways varies depending on the chromatin structure surrounding the damage site and/or the complexity of damage at the DNA break ends. Heavy ion radiation is known to induce complex-type DSBs, and the efficiency of NHEJ in repairing these DSBs was shown to be diminished. Taking advantage of the ability of high linear energy transfer (LET) radiation to produce complex DSBs effectively, we investigated how the complexity of DSB end structure influences DNA damage responses. An early step in HR is the generation of 3'-single strand DNA (SSD) via a process of DNA end resection that requires CtIP. To assess this process, we analyzed the level of phosphorylated CtIP, as well as RPA phosphorylation and focus formation, which occur on the exposed SSD. We show that complex DSBs efficiently activate DNA end resection. After heavy ion beam irradiation, resection signals appear both in the vicinity of heterochromatic areas, which is also observed after X-irradiation, and additionally in euchromatic areas. Consequently, ~85% of complex DSBs are subjected to resection in heavy ion particle tracks. Furthermore, around 20-40% of G1 cells exhibit resection signals. Taken together, our observations reveal that the complexity of DSB ends is a critical factor regulating the choice of DSB repair pathway and drastically alters the balance toward resection-mediated rejoining. As demonstrated here, studies on DNA damage responses induced by heavy ion radiation provide an important tool to shed light on mechanisms regulating DNA end resection.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN por Recombinación , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Línea Celular , ADN de Cadena Simple/metabolismo , Endodesoxirribonucleasas , Células HeLa , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Transferencia Lineal de Energía , Ratones , Morfolinas/farmacología , Proteínas Nucleares/metabolismo , Fosforilación , Pironas/farmacología , Radiación Ionizante , Proteína de Replicación A/metabolismo
12.
J Cell Biol ; 193(2): 295-305, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21482716

RESUMEN

The nonhomologous end-joining (NHEJ) pathway is essential for radioresistance and lymphocyte-specific V(D)J (variable [diversity] joining) recombination. Defects in NHEJ also impair hematopoietic stem cell (HSC) activity with age but do not affect the initial establishment of HSC reserves. In this paper, we report that, in contrast to deoxyribonucleic acid (DNA)-dependent protein kinase catalytic subunit (DNA-PKcs)-null mice, knockin mice with the DNA-PKcs(3A/3A) allele, which codes for three alanine substitutions at the mouse Thr2605 phosphorylation cluster, die prematurely because of congenital bone marrow failure. Impaired proliferation of DNA-PKcs(3A/3A) HSCs is caused by excessive DNA damage and p53-dependent apoptosis. In addition, increased apoptosis in the intestinal crypt and epidermal hyperpigmentation indicate the presence of elevated genotoxic stress and p53 activation. Analysis of embryonic fibroblasts further reveals that DNA-PKcs(3A/3A) cells are hypersensitive to DNA cross-linking agents and are defective in both homologous recombination and the Fanconi anemia DNA damage response pathways. We conclude that phosphorylation of DNA-PKcs is essential for the normal activation of multiple DNA repair pathways, which in turn is critical for the maintenance of diverse populations of tissue stem cells in mice.


Asunto(s)
Reparación del ADN/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Anemia de Fanconi/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Mutación , Proteínas Nucleares/genética , Animales , Apoptosis , Células Cultivadas , Reactivos de Enlaces Cruzados/toxicidad , Daño del ADN , Fibroblastos/metabolismo , Técnicas de Sustitución del Gen , Hiperpigmentación/genética , Ratones , Ratones Noqueados , Recombinación Genética , Proteína p53 Supresora de Tumor/metabolismo
13.
J Mol Biol ; 385(3): 800-10, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19071136

RESUMEN

The phosphatidylinositol 3-kinase-like protein kinases, including ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3 related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit), are the main kinases activated following various assaults on DNA. Although ATM and DNA-PKcs kinases are activated upon DNA double-strand breaks, evidence suggests that these kinases are rapidly phosphorylated by ATR kinase upon UV irradiation; thus, these kinases may also participate in the response to replication stress. Using UV-induced replication stress, we further characterize whether ATM and DNA-PKcs kinase activities are also involved in the cellular response. Contrary to the rapid activation of the ATR-dependent pathway, ATM-dependent Chk2 and KAP-1 phosphorylations, as well as DNA-PKcs Ser2056 autophosphorylation, reach their peak level at 4 to 8 h after UV irradiation. The delayed kinetics of ATM- and DNA-PKcs-dependent phosphorylations also correlated with a surge in H2AX phosphorylation, suggesting that double-strand break formation resulting from collapse of replication forks is responsible for the activation of ATM and DNA-PKcs kinases. In addition, we observed that some phosphorylation events initiated by ATR kinase in the response to UV were mediated by ATM at a later phase of the response. Furthermore, the S-phase checkpoint after UV irradiation was defective in ATM-deficient cells. These results suggest that the late increase of ATM activity is needed to complement the decreasing ATR activity for maintaining a vigilant checkpoint regulation upon replication stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/efectos de la radiación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Rayos Ultravioleta , Proteínas de la Ataxia Telangiectasia Mutada , Western Blotting , Línea Celular , Activación Enzimática , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Transducción de Señal
14.
J Biol Chem ; 282(9): 6582-7, 2007 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-17189255

RESUMEN

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is rapidly phosphorylated at the Thr-2609 cluster and Ser-2056 upon ionizing radiation (IR). Furthermore, DNA-PKcs phosphorylation at both regions is critical for its role in DNA double strand break (DSB) repair as well as cellular resistance to radiation. IR-induced DNA-PKcs phosphorylation at Thr-2609 and Ser-2056, however, exhibits distinct kinetics indicating that they are differentially regulated. Although DNA-PKcs autophosphorylates itself at Ser-2056 after IR, we have reported here that ATM mediates DNA-PKcs phosphorylation at Thr-2609 as well as at the adjacent (S/T)Q motifs within the Thr-2609 cluster. In addition, our data suggest that DNA-PKcs- and ATM-mediated DNA-PKcs phosphorylations are cooperative and required for the full activation of DNA-PKcs and the subsequent DSB repair. Elimination of DNA-PKcs phosphorylation at both regions severely compromises radioresistance and DSB repair. Finally, our result provides a possible mechanism for the direct involvement of ATM in non-homologous end joining-mediated DSB repair.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Treonina/metabolismo , Proteínas Supresoras de Tumor/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Células Cultivadas , Fibroblastos/citología , Humanos , Cinética , Fosforilación/efectos de la radiación , Radiación Ionizante , Serina/metabolismo
15.
Biochem Biophys Res Commun ; 309(3): 520-7, 2003 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-12963020

RESUMEN

CED-4, a pro-apoptotic factor in Caenorhabditis elegans, activates the cell death protease CED-3. CED-9 directly binds to CED-4 and represses this. However, it has remained unclear whether a mammalian CED-9 homologue, Bcl-XL, inhibits the function of the mammalian CED-4 homologue, Apaf-1, by direct binding. To analyze the interaction, we adopted a yeast two-hybrid system. Since Bcl-XL and the CED-4-like portion of Apaf-1 failed to exhibit a positive result in the assay, we prepared "fragment libraries" of bcl-XL or apaf-1 cDNA. By screening of the apaf-1 "fragment library," we obtained nine clones interacting with Bcl-XL, all containing the same region within the ATPase domain, designated BBR: the Bcl-XL binding region. Binding of BBR to Bcl-XL was also confirmed by immunoprecipitation assays. Bcl-2, Bcl-w, A1/Bfl-1, and Boo/Diva failed to show the same capacity for binding to BBR as Bcl-XL. These results indicate that Bcl-XL directly binds to a specific region in Apaf-1.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Factor Apoptótico 1 Activador de Proteasas , Sitios de Unión , Proteínas de Caenorhabditis elegans/química , Proteínas de Unión al Calcio/química , Humanos , Datos de Secuencia Molecular , Pruebas de Precipitina , Estructura Terciaria de Proteína , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos , Proteína bcl-X
16.
Jpn J Cancer Res ; 93(3): 275-83, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11927009

RESUMEN

Activation of postmitochondrial pathways by UV irradiation was examined using mouse lymphoma 3SB and human leukemic Jurkat cells and two human carcinoma cell lines (HeLa and MCF-7). Exposure of 3SB and Jurkat cells resulted in large amounts of cytochrome c and apoptosis-inducing factor (AIF) being released into the cytosol, and a clear laddering pattern of DNA fragments was observed within 3 h of incubation after irradiation. Simultaneously, activation of caspase-9 and its downstream caspases was detected. HeLa and MCF-7 cells also showed extensive release of mitochondrial factors and caspase-9 activation at 4 to 6 h after exposure, but apoptotic nuclear changes appeared much later. Compared with 3SB and Jurkat cells, these carcinoma cell lines exhibited reduced activation of caspase-9-like proteolytic activity by UV radiation, and levels of caspase-3-like activity in HeLa cells were extremely low, similar to those in caspase-3-deficient MCF-7 cells. These results suggest that the delayed response to UV-induced nuclear apoptosis in HeLa cells is due to a reduced activation of the caspase cascade downstream of cytochrome c release and suppression of caspase-3 activity.


Asunto(s)
Apoptosis/efectos de la radiación , Mitocondrias/metabolismo , Transducción de Señal/fisiología , Animales , Factor Inductor de la Apoptosis , Western Blotting , Caspasa 3 , Caspasa 9 , Inhibidores de Caspasas , Caspasas/metabolismo , Núcleo Celular/efectos de la radiación , Cumarinas/metabolismo , Grupo Citocromo c/metabolismo , ADN de Neoplasias/análisis , Femenino , Flavoproteínas/metabolismo , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Células Jurkat , Proteínas de la Membrana/metabolismo , Oligopéptidos/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA