Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Neurophysiol ; 121(3): 973-982, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30699041

RESUMEN

Although motion of the head and body has been suspected or known as the provocative cause for the production of motion sickness for centuries, it is only within the last 20 yr that the source of the signal generating motion sickness and its neural basis has been firmly established. Here, we briefly review the source of the conflicts that cause the body to generate the autonomic signs and symptoms that constitute motion sickness and provide a summary of the experimental data that have led to an understanding of how motion sickness is generated and can be controlled. Activity and structures that produce motion sickness include vestibular input through the semicircular canals, the otolith organs, and the velocity storage integrator in the vestibular nuclei. Velocity storage is produced through activity of vestibular-only (VO) neurons under control of neural structures in the nodulus of the vestibulo-cerebellum. Separate groups of nodular neurons sense orientation to gravity, roll/tilt, and translation, which provide strong inhibitory control of the VO neurons. Additionally, there are acetylcholinergic projections from the nodulus to the stomach, which along with other serotonergic inputs from the vestibular nuclei, could induce nausea and vomiting. Major inhibition is produced by the GABAB receptors, which modulate and suppress activity in the velocity storage integrator. Ingestion of the GABAB agonist baclofen causes suppression of motion sickness. Hopefully, a better understanding of the source of sensory conflict will lead to better ways to avoid and treat the autonomic signs and symptoms that constitute the syndrome.


Asunto(s)
Mareo por Movimiento/fisiopatología , Animales , Baclofeno/uso terapéutico , Agonistas de Receptores GABA-B/uso terapéutico , Humanos , Mareo por Movimiento/tratamiento farmacológico , Núcleos Vestibulares/fisiología , Núcleos Vestibulares/fisiopatología , Vestíbulo del Laberinto/fisiología , Vestíbulo del Laberinto/fisiopatología
2.
FASEB J ; 27(7): 2564-72, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23504712

RESUMEN

Vasovagal responses (VVRs) are characterized by transient drops in blood pressure (BP) and heart rate (HR) and increased amplitude of low-frequency oscillations in the Mayer wave frequency range. Typical VVRs were induced in anesthetized, male, Long-Evans rats by sinusoidal galvanic vestibular stimulation (sGVS). VVRs were also produced by single sinusoids that transiently increased BP and HR, by 70-90° nose-up tilts, and by 60° tilts of the gravitoinertial acceleration vector using translation while rotating (TWR). The average power of the BP signal in the Mayer wave range increased substantially when tilts were >70° (0.91 g), i.e., when linear accelerations in the x-z plane were ≥0.9-1.0 g. The standard deviations of the wavelet-filtered BP signals during tilt and TWR overlaid when they were normalized to 1 g. Thus, the amplitudes of the Mayer waves coded the magnitude of the linear acceleration ≥1 g acting on the head and body, and the average power in this frequency range was associated with the generation of VVRs. These data show that VVRs are a natural outcome of stimulation of the vestibulosympathetic reflex and are not a disease. The results also demonstrate the usefulness of the rat as a small animal model for studying human VVRs.


Asunto(s)
Presión Sanguínea/fisiología , Fenómenos Fisiológicos Cardiovasculares , Frecuencia Cardíaca/fisiología , Modelos Animales , Aceleración , Animales , Fenómenos Biomecánicos , Estimulación Eléctrica , Humanos , Masculino , Fotopletismografía , Postura/fisiología , Ratas , Ratas Long-Evans , Reflejo/fisiología , Rotación , Sistema Nervioso Simpático/fisiología , Vestíbulo del Laberinto/fisiología
3.
Front Rehabil Sci ; 5: 1331135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486679

RESUMEN

Background: The velocity storage mechanism of the central vestibular system is closely associated with the vestibulo-ocular reflex (VOR), but also contributes to the sense of orientation in space and the perception of self-motion. We postulate that mal de débarquement syndrome (MdDS) is a consequence of inappropriate sensory adaptation of velocity storage. The premise that a maladapted velocity storage may be corrected by spatial readaptation of the VOR has recently been translated into the development of the first effective treatment for MdDS. However, this treatment's initial impact may be reversed by subsequent re-triggering events. Presently, we hypothesized that MdDS symptoms could alternatively be reduced by attenuating the velocity storage contribution in the central vestibular pathways. Methods: Forty-three patients with MdDS (aged 47 ± 14 yo; 36 women) were randomly assigned to two treatment groups and followed for 6 months. The horizontal VOR was tested with chair rotation during laboratory visits, and the strength of velocity storage was quantified with model-based parameters-the time constant (Tc) and the gain of coupling from the vestibular primary afferent signals (g0). To attenuate velocity storage, Group 1 underwent a progressively intensifying series of low-frequency earth-vertical oscillatory rotation coupled to conflicting visual stimuli. Group 2 underwent an established protocol combining head tilts and visual stimulation, designed to correct maladapted spatial orientation but not change the velocity storage strength. The symptom severity was self-rated on an 11-point scale and reported before and up to 6 months after the treatment. Results: In Group 1, velocity storage was modified through reduction of g0 (p < 0.001) but not Tc. The symptom rating was at least halved initially in 43% of Group 1 (p = 0.04), the majority of whom retained a similar level of improvement during the 6-month follow-up period. In Group 2, no systematic change was induced in the parameters of velocity storage strength, as expected. The symptom rating was at least halved initially in 80% of Group 2 (p < 0.001), but paralleling previous findings, symptoms often returned subsequently. Conclusion: Attenuation of velocity storage shows promise as a lasting remedy for MdDS that can complement the VOR readaptation approach.

4.
J Neurophysiol ; 107(12): 3349-56, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22402654

RESUMEN

The gain of the vertical angular vestibulo-ocular reflex (aVOR) was adaptively increased and decreased in a side-down head orientation for 4 h in two cynomolgus monkeys. Adaptation was performed at 0.25, 1, 2, or 4 Hz. The gravity-dependent and -independent gain changes were determined over a range of head orientations from left-side-down to right-side-down at frequencies from 0.25 to 10 Hz, before and after adaptation. Gain changes vs. frequency data were fit with a Gaussian to determine the frequency at which the peak gain change occurred, as well as the tuning width. The frequency at which the peak gravity-dependent gain change occurred was approximately equal to the frequency of adaptation, and the width increased monotonically with increases in the frequency of adaptation. The gravity-independent component was tuned to the adaptive frequency of 0.25 Hz but was uniformly distributed over all frequencies when the adaptation frequency was 1-4 Hz. The amplitude of the gravity-independent gain changes was larger after the aVOR gain decrease than after the gain increase across all tested frequencies. For the aVOR gain decrease, the phase lagged about 4° for frequencies below the adaptation frequency and led for frequencies above the adaptation frequency. For gain increases, the phase relationship as a function of frequency was inverted. This study demonstrates that the previously described dependence of aVOR gain adaptation on frequency is a property of the gravity-dependent component of the aVOR only. The gravity-independent component of the aVOR had a substantial tuning curve only at an adaptation frequency of 0.25 Hz.


Asunto(s)
Adaptación Fisiológica , Gravitación , Reflejo Vestibuloocular/fisiología , Animales , Movimientos Oculares/fisiología , Movimientos de la Cabeza/fisiología , Macaca fascicularis
5.
Exp Brain Res ; 220(2): 165-78, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22660376

RESUMEN

Gain adaptation of the yaw angular vestibular ocular reflex (aVOR) induced in side-down positions has gravity-independent (global) and -dependent (localized) components. When the head oscillation angles are small during adaptation, localized gain changes are maximal in the approximate position of adaptation. Concurrently, polarization vectors of canal-otolith vestibular neurons adapt their orientations during these small-angle adaptation paradigms. Whether there is orientation adaptation with large amplitude head oscillations, when the head is not localized to a specific position, is unknown. Yaw aVOR gains were decreased by oscillating monkeys about a yaw axis in a side-down position in a subject-stationary visual surround for 2 h. Amplitudes of head oscillation ranged from 15° to 180°. The yaw aVOR gain was tested in darkness at 0.5 Hz, with small angles of oscillation (±15°) while upright and in tilted positions. The peak value of the gain change was highly tuned for small angular oscillations during adaptation and significantly broadened with larger oscillation angles during adaptation. When the orientation of the polarization vectors associated with the gravity-dependent component of the neural network model was adapted toward the direction of gravity, it predicted the localized learning for small angles and the broadening when the orientation adaptation was diminished. The model-based analysis suggests that the otolith orientation adaptation plays an important role in the localized behavior of aVOR as a function of gravity and in regulating the relationship between global and localized adaptation.


Asunto(s)
Adaptación Fisiológica/fisiología , Relojes Biológicos/fisiología , Movimientos de la Cabeza/fisiología , Orientación/fisiología , Reflejo Vestibuloocular/fisiología , Animales , Movimientos Oculares/fisiología , Macaca fascicularis , Modelos Neurológicos , Neuronas/fisiología , Postura/fisiología
6.
Front Integr Neurosci ; 16: 801817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676926

RESUMEN

Perception of the spatial vertical is important for maintaining and stabilizing vertical posture during body motion. The velocity storage pathway of vestibulo-ocular reflex (VOR), which integrates vestibular, optokinetic, and proprioception in the vestibular nuclei vestibular-only (VO) neurons, has spatio-temporal properties that are defined by eigenvalues and eigenvectors of its system matrix. The yaw, pitch and roll eigenvectors are normally aligned with the spatial vertical and corresponding head axes. Misalignment of the roll eigenvector with the head axes was hypothesized to be an important contributor to the oscillating vertigo during MdDS. Based on this, a treatment protocol was developed using simultaneous horizontal opto-kinetic stimulation and head roll (OKS-VOR). This protocol was not effective in alleviating the MdDS pulling sensations. A model was developed, which shows how maladaptation of the yaw eigenvector relative to the head yaw, either forward, back, or side down, could be responsible for the pulling sensation that subjects experience. The model predicted the sometimes counter-intuitive OKS directions that would be most effective in re-adapting the yaw eigenvector to alleviate the pulling sensation in MdDS. Model predictions were consistent with the treatment of 50 patients with a gravitational pulling sensation as the dominant feature. Overall, pulling symptoms in 72% of patients were immediately alleviated after the treatment and lasted for 3 years after the treatment in 58% of patients. The treatment also alleviated the pulling sensation in patients where pulling was not the dominant feature. Thus, the OKS method has a long-lasting effect comparable to that of OKS-VOR readaptation. The study elucidates how the spatio-temporal organization of velocity storage stabilizes upright posture and how maladaptation of the yaw eigenvector generates MdDS pulling sensations. Thus, this study introduces a new way to treat gravitational pull which could be used alone or in combination with previously proposed VOR readaptation techniques.

7.
Exp Brain Res ; 210(3-4): 583-94, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21340443

RESUMEN

We investigated spatial responses of the aVOR to small and large accelerations in six canal-plugged and lateral canal nerve-sectioned monkeys. The aim was to determine whether there was spatial adaptation after partial and complete loss of all inputs in a canal plane. Impulses of torques generated head thrusts of ≈ 3,000°/s². Smaller accelerations of ≈ 300°/s² initiated the steps of velocity (60°/s). Animals were rotated about a spatial vertical axis while upright (0°) or statically tilted fore-aft up to ± 90°. Temporal aVOR yaw and roll gains were computed at every head orientation and were fit with a sinusoid to obtain the spatial gains and phases. Spatial gains peaked at ≈ 0° for yaw and ≈ 90° for roll in normal animals. After bilateral lateral canal nerve section, the spatial yaw and roll gains peaked when animals were tilted back ≈ 50°, to bring the intact vertical canals in the plane of rotation. Yaw and roll gains were identical in the lateral canal nerve-sectioned monkeys tested with both low- and high-acceleration stimuli. The responses were close to normal for high-acceleration thrusts in canal-plugged animals, but were significantly reduced when these animals were given step stimuli. Thus, high accelerations adequately activated the plugged canals, whereas yaw and roll spatial aVOR gains were produced only by the intact vertical canals after total loss of lateral canal input. We conclude that there is no spatial adaptation of the aVOR even after complete loss of specific semicircular canal input.


Asunto(s)
Adaptación Fisiológica/fisiología , Orientación , Reflejo Vestibuloocular/fisiología , Canales Semicirculares/fisiología , Percepción Espacial/fisiología , Nervio Vestibular/fisiología , Animales , Movimientos Oculares/fisiología , Lateralidad Funcional/fisiología , Macaca fascicularis , Modelos Biológicos , Canales Semicirculares/cirugía , Nervio Vestibular/cirugía
8.
Exp Brain Res ; 210(1): 45-55, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21374078

RESUMEN

Blood pressure (BP) and heart rate (HR) were studied in isoflurane-anesthetized Long-Evans rats during sinusoidal galvanic vestibular stimulation (sGVS) and sinusoidal oscillation in pitch to characterize vestibular influences on autonomic control of BP and HR. sGVS was delivered binaurally via Ag/AgCl needle electrodes inserted over the mastoids at stimulus frequencies 0.008-0.4 Hz. Two processes affecting BP and HR were induced by sGVS: 1) a transient drop in BP (≈15-20 mmHg) and HR (≈3 beat*s(-1)), followed by a slow recovery over 1-6 min; and 2) inhibitory modulations in BP (≈4.5 mmHg/g) and HR (≈0.15 beats*s(-1)/g) twice in each stimulus cycle. The BP and HR modulations were approximately in-phase with each other and were best evoked by low stimulus frequencies. A wavelet analysis indicated significant energies in BP and HR at scales related to twice and four times the stimulus frequency bands. BP and HR were also modulated by oscillation in pitch at frequencies 0.025-0.5 Hz. Sensitivities at 0.025 Hz were ≈4.5 mmHg/g (BP) and ≈0.17 beat*s(-1)/g (HR) for pitches of 20-90°. The tilt-induced BP and HR modulations were out-of-phase, but the frequencies at which responses were elicited by tilt and sGVS were the same. The results show that the sGVS-induced responses, which likely originate in the otolith organs, can exert a powerful inhibitory effect on both BP and HR at low frequencies. These responses have a striking resemblance to human vasovagal responses. Thus, sGVS-activated rats can potentially serve as a useful experimental model of the vasovagal response in humans.


Asunto(s)
Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Síncope Vasovagal/fisiopatología , Vestíbulo del Laberinto/fisiología , Animales , Estimulación Eléctrica , Masculino , Distribución Aleatoria , Ratas , Ratas Long-Evans , Nervio Vago/fisiología
9.
Exp Brain Res ; 210(3-4): 549-60, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21286691

RESUMEN

To determine whether the COR compensates for the loss of aVOR gain, independent of species, we studied cynomolgus and rhesus monkeys in which all six semicircular canals were plugged. Gains and phases of the aVOR and COR were determined at frequencies ranging from 0.02 to 6 Hz and fit with model-based transfer functions. Following canal plugging in a rhesus monkey, the acute stage aVOR gain was small and there were absent responses to thrusts of yaw rotation. In the chronic state, aVOR behavior was characterized by a cupula/endolymph time constant of ≈ 0.07 s, responding only to high frequencies of head rotation. COR gains were ≈ 0 before surgery but increased to ≈ 0.15 at low frequencies just after surgery; the COR gains increased to ≈ 0.4 over the next 12 weeks. Nine weeks after surgery, the summated aVOR + COR responses compensated for head velocity in space in the 0.5-3 Hz frequency range. The gains and phases continued to improve until the 35th week, where the combined aVOR + COR stabilized with gains of ≈ 0.5-0.6 and the phases were compensatory over all frequencies. Two cynomolgus monkeys operated 3-12 years earlier had similar frequency characteristics of the aVOR and COR. The combined aVOR + COR gains were ≈ 0.4-0.8 with compensatory phases. To achieve gains close to 1.0, other mechanisms may contribute to gaze compensation, especially with the head free. Thus, while there are individual variations in the time of adaptation of the gain and phase parameters, the essential functional organization of the adaption to vestibular lesions is uniform across these species.


Asunto(s)
Adaptación Fisiológica/fisiología , Cuello/fisiología , Reflejo Vestibuloocular/fisiología , Canales Semicirculares/fisiología , Animales , Movimientos Oculares/fisiología , Macaca fascicularis , Macaca mulatta , Modelos Biológicos , Estimulación Física , Canales Semicirculares/cirugía , Factores de Tiempo
10.
Front Neurol ; 12: 631409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776889

RESUMEN

Vasovagal syncope (VVS) or neurogenically induced fainting has resulted in falls, fractures, and death. Methods to deal with VVS are to use implanted pacemakers or beta blockers. These are often ineffective because the underlying changes in the cardiovascular system that lead to the syncope are incompletely understood and diagnosis of frequent occurrences of VVS is still based on history and a tilt test, in which subjects are passively tilted from a supine position to 20° from the spatial vertical (to a 70° position) on the tilt table and maintained in that orientation for 10-15 min. Recently, is has been shown that vasovagal responses (VVRs), which are characterized by transient drops in blood pressure (BP), heart rate (HR), and increased amplitude of low frequency oscillations in BP can be induced by sinusoidal galvanic vestibular stimulation (sGVS) and were similar to the low frequency oscillations that presaged VVS in humans. This transient drop in BP and HR of 25 mmHg and 25 beats per minute (bpm), respectively, were considered to be a VVR. Similar thresholds have been used to identify VVR's in human studies as well. However, this arbitrary threshold of identifying a VVR does not give a clear understanding of the identifying features of a VVR nor what triggers a VVR. In this study, we utilized our model of VVR generation together with a machine learning approach to learn a separating hyperplane between normal and VVR patterns. This methodology is proposed as a technique for more broadly identifying the features that trigger a VVR. If a similar feature identification could be associated with VVRs in humans, it potentially could be utilized to identify onset of a VVS, i.e, fainting, in real time.

11.
Front Neurol ; 11: 814, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013617

RESUMEN

Mal de Debarquement syndrome (MdDS) is composed of constant phantom sensations of motion, which are frequently accompanied by increased sensitivity to light, inability to walk on a patterned floor, the sensation of ear fullness, head pressure, anxiety, and depression. This disabling condition generally occurs in premenopausal women within 2 days after prolonged passive motion (e.g., travel on a cruise ship, plane, or in a car). It has been previously hypothesized that MdDS is the result of maladaptive changes in the polysynaptic vestibulo-ocular reflex (VOR) pathway called velocity storage. Past research indicates that full-field optokinetic stimulation is an optimal way to activate velocity storage. Unfortunately, such devices are typically bulky and not commonly available. We questioned whether virtual reality (VR) goggles with a restricted visual field could effectively simulate a laboratory environment for MdDS treatment. A stripes program for optokinetic stimulation was implemented using Google Daydream Viewer. Five female patients (42 ± 10 years; range 26-50), whose average MdDS symptom duration was 2 months, participated in this study. Four patients had symptoms triggered by prolonged passive motion, and in one, symptoms spontaneously occurred. Symptom severity was self-scored by patients on a scale of 0-10, where 0 is no symptoms at all and 10 is the strongest symptoms that the patient could imagine. Static posturography was obtained to determine objective changes in body motion. The treatment was considered effective if the patient's subjective score improved by at least 50%. All five patients reported immediate improvement. On 2-month follow-ups, symptoms returned only in one patient. These data provide proof of concept for the limited-visual-field goggles potentially having clinical utility as a substitute for full-field optokinetic stimulation in treating patients with MdDS in clinics or via telemedicine.

12.
J Neurophysiol ; 102(5): 2616-26, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19692515

RESUMEN

Little is known about the dependence of the roll angular vestibuloocular reflex (aVOR) on gravity or its gravity-dependent adaptive properties. To study gravity-dependent characteristics of the roll aVOR, monkeys were oscillated about a naso-occipital axis in darkness while upright or tilted. Roll aVOR gains were largest in the upright position and decreased by 7-15% as animals were tilted from the upright. Thus the unadapted roll aVOR gain has substantial gravitational dependence. Roll gains were also decreased or increased by 0.25 Hz, in- or out-of-phase rotation of the head and the visual surround while animals were prone, supine, upright, or in side-down positions. Gain changes, determined as a function of head tilt, were fit with a sinusoid; the amplitudes represented the amount of the gravity-dependent gain change, and the bias, the gravity-independent gain change. Gravity-dependent gain changes were absent or substantially smaller in roll (approximately 5%) than in yaw (25%) or pitch (17%), whereas gravity-independent gain changes were similar for roll, pitch, and yaw (approximately 20%). Thus the high-frequency roll aVOR gain has an inherent dependence on head orientation re gravity in the unadapted state, which is different from the yaw/pitch aVORs. This inherent gravitational dependence may explain why the adaptive circuits are not active when the head is tilted re gravity during roll aVOR adaptation. These behavioral differences support the idea that there is a fundamental difference in the central organization of canal-otolith convergence of the roll and yaw/pitch aVORs.


Asunto(s)
Gravitación , Orientación/fisiología , Reflejo Vestibuloocular/fisiología , Adaptación Fisiológica , Animales , Procesamiento Automatizado de Datos/métodos , Movimientos Oculares/fisiología , Cabeza/fisiología , Macaca fascicularis , Macaca mulatta , Torsión Mecánica
13.
Front Neurol ; 9: 28, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29459843

RESUMEN

The Mal de Debarquement syndrome (MdDS) generally follows sea voyages, but it can occur after turbulent flights or spontaneously. The primary features are objective or perceived continuous rocking, swaying, and/or bobbing at 0.2 Hz after sea voyages or 0.3 Hz after flights. The oscillations can continue for months or years and are immensely disturbing. Associated symptoms appear to be secondary to the incessant sensation of movement. We previously suggested that the illness can be attributed to maladaptation of the velocity storage integrator in the vestibular system, but the actual neural mechanisms driving the MdDS are unknown. Here, based on experiments in subhuman primates, we propose a series of postulates through which the MdDS is generated: (1) The MdDS is produced in the velocity storage integrator by activation of vestibular-only (VO) neurons on either side of the brainstem that are oscillating back and forth at 0.2 or 0.3 Hz. (2) The groups of VO neurons are driven by signals that originate in Purkinje cells in the cerebellar nodulus. (3) Prolonged exposure to roll, either on the sea or in the air, conditions the roll-related neurons in the nodulus. (4) The prolonged exposure causes a shift of the pitch orientation vector from its original position aligned with gravity to a position tilted in roll. (5) Successful treatment involves exposure to a full-field optokinetic stimulus rotating around the spatial vertical countering the direction of the vestibular imbalance. This is done while rolling the head at the frequency of the perceived rocking, swaying, or bobbing. We also note experiments that could be used to verify these postulates, as well as considering potential flaws in the logic. Important unanswered questions: (1) Why does the MdDS predominantly affect women? (2) What aspect of roll causes the prolongation of the tilted orientation vector, and why is it so prolonged in some individuals? (3) What produces the increase in symptoms of some patients when returning home after treatment, and how can this be avoided? We also posit that the same mechanisms underlie the less troublesome and shorter duration Mal de Debarquement.

15.
Physiol Rep ; 6(17): e13750, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30178612

RESUMEN

The spatio-temporal convergent (STC) response occurs in central vestibular cells when dynamic and static inputs are activated. The functional significance of STC behavior is not fully understood. Whether STC is a property of some specific central vestibular neurons, or whether it is a response that can be induced in any neuron at some frequencies is unknown. It is also unknown how the change in orientation of otolith polarization vector (orientation adaptation) affects STC behavior. A new complex model, that includes inputs with regular and irregular discharges from both canal and otolith afferents, was applied to experimental data to determine how many convergent inputs are sufficient to explain the STC behavior as a function of frequency and orientation adaptation. The canal-otolith and otolith-only neurons were recorded in the vestibular nuclei of three monkeys. About 42% (11/26 canal-otolith and 3/7 otolith-only) neurons showed typical STC responses at least at one frequency before orientation adaptation. After orientation adaptation in side-down head position for 2 h, some canal-otolith and otolith-only neurons altered their STC responses. Thus, STC is a property of weights of the regular and irregular vestibular afferent inputs to central vestibular neurons which appear and/or disappear based on stimulus frequency and orientation adaptation. This indicates that STC properties are more common for central vestibular neurons than previously assumed. While gravity-dependent adaptation is also critically dependent on stimulus frequency and orientation adaptation, we propose that STC behavior is also linked to the neural network responsible for localized contextual learning during gravity-dependent adaptation.


Asunto(s)
Neuronas/fisiología , Orientación Espacial , Membrana Otolítica/fisiología , Núcleos Vestibulares/fisiología , Animales , Macaca fascicularis , Modelos Neurológicos , Núcleos Vestibulares/citología
16.
Front Neurol ; 9: 362, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29910765

RESUMEN

INTRODUCTION: Mal de Debarquement Syndrome (MdDS) is a condition characterized by a persistent perception of self-motion, in most cases triggered from exposure to passive motion (e.g., boat travel, a car ride, flights). Patients whose onset was triggered in this way are categorized as Motion-Triggered (MT) subtype or onset group. However, the same syndrome can occur spontaneously or after non-motion events, such as childbirth, high stress, surgery, etc. Patients who were triggered in this way are categorized as being of the Spontaneous/Other (SO) subtype or onset group. The underlying pathophysiology of MdDS is unknown and there has been some speculation that the two onset groups are separate entities. However, despite the differences in onset between the subtypes, symptoms are parallel and a significant female predominance has been shown. To date, the role of gonadal hormones in MdDS pathophysiology has not been investigated. This study aimed to evaluate the hormonal profile of MdDS patients, the presence of hormonal conditions, the influence of hormones on symptomatology and to assess possible hormonal differences between onset groups. In addition, the prevalence of migraine and motion sickness and their relation to MdDS were assessed. METHOD: Retrospective online surveys were performed in 370 MdDS patients from both onset groups. Data were analyzed using Fisher's exact test or Fisher-Freeman-Hanlon exact test. When possible, data were compared with normative statistical data from the wider literature. RESULTS: From the data collected, it was evident that naturally cycling female respondents from the MT group were significantly more likely to report an aggravation of MdDS symptoms during menses and mid-cycle (p < 0.001). A few preliminary differences between the onset groups were highlighted such as in regular menstrual cycling (p = 0.028), reporting menses during onset (p < 0.016), and migraine susceptibility after onset (p = 0.044). CONCLUSION: These results demonstrate a potential relation between hormone fluctuations and symptom aggravation in the MT group. This study is an important first step to suggest a hormonal involvement in the pathophysiology of MdDS and provides a base for further hormonal investigation. Future prospective studies should expand upon these results and explore the implications for treatment.

17.
Front Neurol ; 8: 386, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28861030

RESUMEN

Semicircular canal afferents sense angular acceleration and output angular velocity with a short time constant of ≈4.5 s. This output is prolonged by a central integrative network, velocity storage that lengthens the time constants of eye velocity. This mechanism utilizes canal, otolith, and visual (optokinetic) information to align the axis of eye velocity toward the spatial vertical when head orientation is off-vertical axis. Previous studies indicated that vestibular-only (VO) and vestibular-pause-saccade (VPS) neurons located in the medial and superior vestibular nucleus could code all aspects of velocity storage. A recently developed technique enabled prolonged recording while animals were rotated and received optokinetic stimulation about a spatial vertical axis while upright, side-down, prone, and supine. Firing rates of 33 VO and 8 VPS neurons were studied in alert cynomolgus monkeys. Majority VO neurons were closely correlated with the horizontal component of velocity storage in head coordinates, regardless of head orientation in space. Approximately, half of all tested neurons (46%) code horizontal component of velocity in head coordinates, while the other half (54%) changed their firing rates as the head was oriented relative to the spatial vertical, coding the horizontal component of eye velocity in spatial coordinates. Some VO neurons only coded the cross-coupled pitch or roll components that move the axis of eye rotation toward the spatial vertical. Sixty-five percent of these VO and VPS neurons were more sensitive to rotation in one direction (predominantly contralateral), providing directional orientation for the subset of VO neurons on either side of the brainstem. This indicates that the three-dimensional velocity storage integrator is composed of directional subsets of neurons that are likely to be the bases for the spatial characteristics of velocity storage. Most VPS neurons ceased firing during drowsiness, but the firing rates of VO neurons were unaffected by states of alertness and declined with the time constant of velocity storage. Thus, the VO neurons are the prime components of the mechanism of coding for velocity storage, whereas the VPS neurons are likely to provide the path from the vestibular to the oculomotor system for the VO neurons.

18.
Front Neurol ; 8: 83, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28360882

RESUMEN

Vasovagal syncope is a significant medical problem without effective therapy, postulated to be related to a collapse of baroreflex function. While some studies have shown that repeated static tilts can block vasovagal syncope, this was not found in other studies. Using anesthetized, male Long-Evans rats that were highly susceptible to generation of vasovagal responses, we found that repeated activation of the vestibulosympathetic reflex (VSR) with ±2 and ±3 mA, 0.025 Hz sinusoidal galvanic vestibular stimulation (sGVS) caused incremental changes in blood pressure (BP) and heart rate (HR) that blocked further generation of vasovagal responses. Initially, BP and HR fell ≈20-50 mmHg and ≈20-50 beats/min (bpm) into a vasovagal response when stimulated with Sgv\S in susceptible rats. As the rats were continually stimulated, HR initially rose to counteract the fall in BP; then the increase in HR became more substantial and long lasting, effectively opposing the fall in BP. Finally, the vestibular stimuli simply caused an increase in BP, the normal sequence following activation of the VSR. Concurrently, habituation caused disappearance of the low-frequency (0.025 and 0.05 Hz) oscillations in BP and HR that must be present when vasovagal responses are induced. Habituation also produced significant increases in baroreflex sensitivity (p < 0.001). Thus, repeated low-frequency activation of the VSR resulted in a reduction and loss of susceptibility to development of vasovagal responses in rats that were previously highly susceptible. We posit that reactivation of the baroreflex, which is depressed by anesthesia and the disappearance of low-frequency oscillations in BP and HR are likely to be critically involved in producing resistance to the development of vasovagal responses. SGVS has been widely used to activate muscle sympathetic nerve activity in humans and is safe and well tolerated. Potentially, it could be used to produce similar habituation of vasovagal syncope in humans.

19.
Front Neurol ; 8: 175, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28529496

RESUMEN

The mal de debarquement syndrome (MdDS) is a movement disorder, occurring predominantly in women, is most often induced by passive transport on water or in the air (classic MdDS), or can occur spontaneously. MdDS likely originates in the vestibular system and is unfamiliar to many physicians. The first successful treatment was devised by Dai et al. (1), and over 330 MdDS patients have now been treated. Here, we report the outcomes of 141 patients (122 females and 19 males) treated 1 year or more ago. We examine the patient's rocking frequency, body drifting, and nystagmus. The patients are then treated according to these findings for 4-5 days. During treatment, patients' heads were rolled while watching a rotating full-field visual surround (1). Their symptom severity after the initial treatment and at the follow-up was assessed using a subjective 10-point scale. Objective measures, taken before and at the end of the week of treatment, included static posturography. Significant improvement was a reduction in symptom severity by more than 50%. Objective measures were not possible during the follow-up because of the wide geographic distribution of the patients. The treatment group consisted of 120 classic and 21 spontaneous MdDS patients. The initial rate of significant improvement after a week of treatment was 78% in classic and 48% in spontaneous patients. One year later, significant improvement was maintained in 52% of classic and 48% of spontaneous subjects. There was complete remission of symptoms in 27% (32) of classic and 19% (4) of spontaneous patients. Although about half of them did not achieve a 50% improvement, most reported fewer and milder symptoms than before. The success of the treatment was generally inversely correlated with the duration of the MdDS symptoms and with the patients' ages. Prolonged travel by air or car on the way home most likely contributed to the symptomatic reversion from the initial successful treatment. Our results indicate that early diagnosis and treatment can significantly improve results, and the prevention of symptomatic reversion will increase the long-term benefit in this disabling disorder.

20.
Front Neurosci ; 10: 96, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27065779

RESUMEN

Blood Pressure (BP), comprised of recurrent systoles and diastoles, is controlled by central mechanisms to maintain blood flow. Periodic behavior of BP was modeled to study how peak amplitudes and frequencies of the systoles are modulated by vestibular activation. The model was implemented as a relaxation oscillator, driven by a central signal related to Desired BP. Relaxation oscillations were maintained by a second order system comprising two integrators and a threshold element in the feedback loop. The output signal related to BP was generated as a nonlinear function of the derivative of the first state variable, which is a summation of an input related to Desired BP, feedback from the states, and an input from the vestibular system into one of the feedback loops. This nonlinear function was structured to best simulate the shapes of systoles and diastoles, the relationship between BP and Heart Rate (HR) as well as the amplitude modulations of BP and Pulse Pressure. Increases in threshold in one of the feedback loops produced lower frequencies of HR, but generated large pulse pressures to maintain orthostasis, without generating a VasoVagal Response (VVR). Pulse pressures were considerably smaller in the anesthetized rats than during the simulations, but simulated pulse pressures were lowered by including saturation in the feedback loop. Stochastic changes in threshold maintained the compensatory Baroreflex Sensitivity. Sudden decreases in Desired BP elicited non-compensatory VVRs with smaller pulse pressures, consistent with experimental data. The model suggests that the Vestibular Sympathetic Reflex (VSR) modulates BP and HR of an oscillating system by manipulating parameters of the baroreflex feedback and the signals that maintain the oscillations. It also shows that a VVR is generated when the vestibular input triggers a marked reduction in Desired BP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA