Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biodivers ; : e202400833, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959122

RESUMEN

Seaweeds of the red algal genus Laurencia are widely distributed worldwide in tropical, subtropical to temperate zones, and grow in Japan from Hokkaido to Okinawa. Laurencia is one of the most studied seaweeds by organic chemists because it produces a variety of compounds with unique structures. In Japan, various halogenated compounds have been found in Laurencia, while some species do not produce any halogenated compounds. Laurencia is one of the most difficult seaweeds to classify morphologically; however, the major halogenated secondary metabolites produced tend to be species-specific, and these compounds can be used as chemical markers for chemical systematics (chemotaxonomy). Similarly, it has been confirmed that domestic Laurencia species produce species-specific halogenated compounds of certain types. Laurencia is one of the "weedy seaweeds" that have not been effectively utilized at present, but it produces a wide variety of metabolites, so there is a good possibility that compounds with specific activity may be found. Thus, it can be seen that the secondary metabolites in Laurencia have many interesting aspects. In this review, we reported significant morphological features to distinguish species in this genus, and the morphological features, habitat, distribution, and chemical composition that help discriminate Japanese Laurencia species.

2.
Chem Biodivers ; 21(5): e202400436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38529722

RESUMEN

The red algal genus Portieria is a prolific producer of halogenated monoterpenoids. In this study, we isolated and characterised monoterpenoids from the Okinawan red algae Portieria hornemannii. A new polyhalogenated cyclic monoterpenoid, 2(R)-chloro-1,6(S)-dibromo-3(8)(Z)-ochtoden-4(R)-ol (1), along with three known monoterpenoids, (2R,3(8)E,4S,6R)-6-bromo-2-chloro-1,4-oxido-3(8)-ochtodene (2), 1-bromo-2-chloroochtoda-3(8),5-dien-4-one (3), and 2-chloro-1-hydroxyochtoda-3(8),5-dien-4-one (4) were isolated from the methanol extract of three populations of P. hornemannii. These compounds were characterised using a combination of spectroscopic methods and chemical synthesis, and the absolute stereochemistry of compounds 1 and 2 was determined. In addition, all isolated compounds were screened for their anti-biofouling activity against the mussel Mytilus galloprovincialis, and 1 exhibited strong activity. Therefore, halogenated monoterpenoids have the potential to be used as natural anti-biofouling drugs.


Asunto(s)
Incrustaciones Biológicas , Monoterpenos , Rhodophyta , Animales , Incrustaciones Biológicas/prevención & control , Halogenación , Estructura Molecular , Monoterpenos/aislamiento & purificación , Monoterpenos/química , Monoterpenos/farmacología , Rhodophyta/química , Guanetidina/química , Guanetidina/aislamiento & purificación , Guanetidina/farmacología
3.
Chem Biodivers ; 20(8): e202300888, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37468446

RESUMEN

The marine red algal genus Laurencia has abundant halogenated secondary metabolites, which exhibit novel structural types and possess various unique biological potentials, including antifouling activity. In this study, we report the isolation, structure elucidation, and antifouling activities of two novel brominated diterpenoids, aplysin-20 aldehyde (1), 13-dehydroxyisoaplysin-20 (2), and its congeners. We screened marine red alga Laurencia venusta Yamada for their antifouling activity against the mussel Mytilus galloprovincialis. Ethyl acetate extracts of L. venusta from Hiroshima and Chiba, Japan, were isolated and purified, and the compound structures were identified using 1D and 2D NMR, HR-APCI-MS, IR, and chemical synthesis. Seven secondary metabolites were identified, and their antifouling activities were evaluated. Compounds 1, 2, and aplysin-20 (3) exhibited strong activities against M. galloprovincialis. Therefore, these compounds can be explored as natural antifouling drugs.


Asunto(s)
Incrustaciones Biológicas , Diterpenos , Laurencia , Rhodophyta , Incrustaciones Biológicas/prevención & control , Diterpenos/farmacología , Diterpenos/química , Laurencia/química , Estructura Molecular , Rhodophyta/química
4.
Plant Cell Physiol ; 57(6): 1231-43, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27057002

RESUMEN

Photosynthetic organisms have various pigments enabling them to adapt to various light environments. Green plants are divided into two groups: streptophytes and chlorophytes. Streptophytes include some freshwater green algae and land plants, while chlorophytes comprise the other freshwater green algae and seawater green algae. The environmental conditions driving the divergence of green plants into these two groups and the changes in photosynthetic properties accompanying their evolution remain unknown. Here, we separated the core antennae of PSI and the peripheral antennae [light-harvesting complexes (LHCs)] in green plants by green-native gel electrophoresis and determined their pigment compositions. Freshwater green algae and land plants have high Chl a/b ratios, with most Chl b existing in LHCs. In contrast, seawater green algae have low Chl a/b ratios. In addition, Chl b exists not only in LHCs but also in PSI core antennae in these organisms, a situation beneficial for survival in deep seawater, where blue-green light is the dominant light source. Finally, low-energy Chl (red Chl) of PSI was detected in freshwater green algae and land plants, but not in seawater green algae. We thus conclude that the different level of Chl b accumulation in core antennae and differences in PSI red Chl between freshwater and seawater green algae are evolutionary adaptations of these algae to their habitats, especially to high- or low-light environments.


Asunto(s)
Evolución Biológica , Complejos de Proteína Captadores de Luz/metabolismo , Viridiplantae/metabolismo , Secuencia de Aminoácidos , Clorofila/metabolismo , Chlorophyta/metabolismo , Electroforesis en Gel de Poliacrilamida , Metabolismo Energético/efectos de la radiación , Luz , Complejo de Proteína del Fotosistema I/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Agua de Mar , Espectrometría de Fluorescencia , Análisis Espectral , Viridiplantae/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA