Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(8): 087205, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167315

RESUMEN

Quantum spin liquids (QSLs) form an extremely unusual magnetic state in which the spins are highly correlated and fluctuate coherently down to the lowest temperatures, but without symmetry breaking and without the formation of any static long-range-ordered magnetism. Such intriguing phenomena are not only of great fundamental relevance in themselves, but also hold promise for quantum computing and quantum information. Among different types of QSLs, the exactly solvable Kitaev model is attracting much attention, with most proposed candidate materials, e.g., RuCl_{3} and Na_{2}IrO_{3}, having an effective S=1/2 spin value. Here, via extensive first-principles-based simulations, we report the investigation of the Kitaev physics and possible Kitaev QSL state in epitaxially strained Cr-based monolayers, such as CrSiTe_{3}, that rather possess a S=3/2 spin value. Our study thus extends the playground of Kitaev physics and QSLs to 3d transition metal compounds.

2.
Phys Rev Lett ; 115(19): 197701, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26588415

RESUMEN

Energy dissipation and decoherence are at first glance harmful to acquiring the long exciton lifetime desired for efficient photovoltaics. In the presence of both optically forbidden (namely, dark) and allowed (bright) excitons, however, they can be instrumental, as suggested in photosynthesis. By simulating the quantum dynamics of exciton relaxations, we show that the optimized decoherence that imposes a quantum-to-classical crossover with the dissipation realizes a dramatically longer lifetime. In an example of a carbon nanotube, the exciton lifetime increases by nearly 2 orders of magnitude when the crossover triggers a stable high population in the dark excitons.

3.
Phys Rev Lett ; 113(10): 107201, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25238380

RESUMEN

An effective low-energy Hamiltonian of itinerant electrons for iridium oxide Na2IrO3 is derived by an ab initio downfolding scheme. The model is then reduced to an effective spin model on a honeycomb lattice by the strong coupling expansion. Here we show that the ab initio model contains spin-spin anisotropic exchange terms in addition to the extensively studied Kitaev and Heisenberg exchange interactions, and allows us to describe the experimentally observed zigzag magnetic order, interpreted as the state stabilized by the antiferromagnetic coupling of the ferromagnetic chains. We clarify possible routes to realize quantum spin liquids from existing Na2IrO3.

4.
Adv Sci (Weinh) ; : e2402608, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934905

RESUMEN

Achieving precise estimates of battery cycle life is a formidable challenge due to the nonlinear nature of battery degradation. This study explores an approach using machine learning (ML) methods to predict the cycle life of lithium-metal-based rechargeable batteries with high mass loading LiNi0.8Mn0.1Co0.1O2 electrode, which exhibits more complicated and electrochemical profile during battery operating conditions than typically studied LiFePO4/graphite based rechargeable batteries. Extracting diverse features from discharge, charge, and relaxation processes, the intricacies of cell behavior without relying on specific degradation mechanisms are navigated. The best-performing ML model, after feature selection, achieves an R2 of 0.89, showcasing the application of ML in accurately forecasting cycle life. Feature importance analysis unveils the logarithm of the minimum value of discharge capacity difference between 100 and 10 cycle (Log(|min(ΔDQ 100-10(V))|)) as the most important feature. Despite the inherent challenges, this model demonstrates a remarkable 6.6% test error on unseen data, underscoring its robustness and potential for transformative advancements in battery management systems. This study contributes to the successful application of ML in the realm of cycle life prediction for lithium-metal-based rechargeable batteries with practically high energy density design.

5.
Phys Rev Lett ; 106(1): 016404, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21231759

RESUMEN

We propose that an extension of the exciton concept to doped Mott insulators offers a fruitful insight into challenging issues of the copper oxide superconductors. In our extension, new fermionic excitations called cofermions emerge in conjunction to generalized excitons. The cofermions hybridize with conventional quasiparticles. Then a hybridization gap opens, and is identified as the pseudogap observed in the underdoped cuprates. The resultant Fermi-surface reconstruction naturally explains a number of unusual properties of the underdoped cuprates, such as the Fermi arc and/or pocket formation.

6.
Phys Rev Lett ; 105(3): 036403, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20867783

RESUMEN

We investigate the effect of geometrical frustration on the competition between the Kondo coupling and the Ruderman-Kittel-Kasuya-Yosida interaction in Kondo lattice systems. By variational Monte Carlo simulations, we reveal an emergent quantum phase with partial ordering in which the frustration is relieved by forming a magnetic order on a sublattice and leaving the rest in the Kondo screening with spin-singlet formation. The role of quantum fluctuations and spin-charge interplay is elucidated.

7.
Nat Commun ; 11(1): 1639, 2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32242020

RESUMEN

Recent discovery of the half quantized thermal Hall conductivity in [Formula: see text]-RuCl[Formula: see text], a candidate material for the Kitaev spin liquid, suggests the presence of a highly entangled quantum state in external magnetic fields. This field induced phase appears between the low field zig-zag magnetic order and the high field polarized state. Motivated by this experiment, we study possible field induced quantum phases in theoretical models of the Kitaev magnets, using the two dimensional tensor network approach or infinite tensor product states. We find various quantum ground states in addition to the chiral Kitaev spin liquid occupying a small area in the phase diagram. They form a band of emergent quantum phases in an intermediate window of external magnetic fields, somewhat reminiscent of the experiment. We discuss the implications of these results in view of the experiment and previous theoretical studies.

8.
J Phys Condens Matter ; 22(16): 164206, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21386412

RESUMEN

We analyze and overview some of the different types of unconventional quantum criticalities by focusing on two origins. One origin of the unconventionality is the proximity to first-order transitions. The border between the first-order and continuous transitions is described by a quantum tricritical point (QTCP) for symmetry breaking transitions. One of the characteristic features of the quantum tricriticality is the concomitant divergence of an order parameter and uniform fluctuations, in contrast to the conventional quantum critical point (QCP). The interplay of these two fluctuations generates unconventionality. Several puzzling non-Fermi-liquid properties in experiments are taken to be accounted for by the resultant universality, as in the cases of Y bRh(2)Si(2), CeRu(2)Si(2) and ß-Y bAlB(4). Another more dramatic unconventionality appears again at the border of the first-order and continuous transitions, but in this case for topological transitions such as metal-insulator and Lifshitz transitions. This border, the marginal quantum critical point (MQCP), belongs to an unprecedented universality class with diverging uniform fluctuations at zero temperature. The Ising universality at the critical end point of the first-order transition at nonzero temperatures transforms to the marginal quantum criticality when the critical temperature is suppressed to zero. The MQCP has a unique feature with a combined character of symmetry breaking and topological transitions. In the metal-insulator transitions, the theoretical results are supported by experimental indications for V(2 - x)Cr(x)O(3) and an organic conductor κ-(ET)(2)Cu[N(CN)(2)]Cl. Identifying topological transitions also reveals how non-Fermi liquid appears as a phase in metals. The theory also accounts for the criticality of a metamagnetic transition in ZrZn(2), by interpreting it as an interplay of Lifshitz transition and correlation effects. We discuss the common underlying physics in these examples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA