Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(28): 33581-33592, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37417321

RESUMEN

High photovoltaic performance and light stability are required for the practical outdoor use of lead-halide perovskite solar cells. To improve the light stability of perovskite solar cells, it is effective to introduce a self-assembled monolayer (SAM) between the carrier transport layer and the perovskite layer. Several alternative approaches in their molecular design and combination with multiple SAMs support high photovoltaic conversion efficiency (PCE). Herein, we report a new structure for improving both PCE and light stability, in which the surface of an electron transport layer (ETL) was modified by combining a fullerene-functionalized self-assembled monolayer (C60SAM) and a suitable gap-filling self-assembled monolayer (GFSAM). Small-sized GFSAMs can enter the gap space of the C60SAM and terminate the unterminated sites on the ETL surface. The best GFSAM in this study was formed using an isonicotinic acid solution. After a light stability test for 68 h at 50 °C under 1 sun illumination, the best cell with C60SAM and GFSAM showed a PCE of 18.68% with a retention rate of over 99%. Moreover, following outdoor exposure for six months, the cells with C60SAM and GFSAM exhibited almost unchanged PCE. From the valence band spectra of the ETLs obtained using hard X-ray photoelectron spectroscopy, we confirmed a decrease in the offset at the ETL/perovskite interface owing to the additional GFSAM treatment on the C60SAM-modified ETL surface. Time-resolved microwave conductivity measurements demonstrated that the additional GFSAM improved electron extraction at the C60SAM-modified ETL/perovskite interface.

2.
Adv Mater ; 31(10): e1806823, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30633402

RESUMEN

Perovskite solar cells have received great attention because of their rapid progress in efficiency, with a present certified highest efficiency of 23.3%. Achieving both high efficiency and high thermal stability is one of the biggest challenges currently limiting perovskite solar cells because devices displaying stability at high temperature frequently suffer from a marked decrease of efficiency. In this report, the relationship between perovskite composition and device thermal stability is examined. It is revealed that Rb can suppress the growth of PbI2 even under PbI2 -rich conditions and decreasing the Br ratio in the perovskite absorber layer can prevent the generation of unwanted RbBr-based aggregations. The optimized device achieved by engineering perovskite composition exhibits 92% power conversion efficiency retention in a stress test conducted at 85 °C/85% relative humidity (RH) according to an international standard (IEC 61215) while exceeding 20% power conversion efficiency (certified efficiency of 20.8% at 1 cm2 ). These results reveal the great potential for the practical use of perovskite solar cells in the near future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA