Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Retrovirology ; 19(1): 24, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329491

RESUMEN

Bovine leukemia virus (BLV) infects cattle, integrates into host DNA as a provirus, and induces malignant B-cell lymphoma. Previous studies have addressed the impact of proviral integration of BLV on BLV-induced leukemogenesis. However, no studies have monitored sequential changes in integration sites in which naturally infected BLV individuals progress from the premalignant stage to the terminal disease. Here, we collected blood samples from a single, naturally infected Holstein cow at three disease progression stages (Stage I: polyclonal stage, Stage II: polyclonal toward oligoclonal stage, Stage III: oligoclonal stage) and successfully visualized the kinetics of clonal expansion of cells carrying BLV integration sites using our BLV proviral DNA-capture sequencing method. Although 24 integration sites were detected in Stages I and II, 92% of these sites experienced massive depletion in Stage III. Of these sites, 46%, 37%, and 17% were located within introns of Refseq genes, intergenic regions, and repetitive sequences, respectively. At Stage III cattle with lymphoma, only two integration sites were generated de novo in the intergenic region of Chr1, and the intron of the CHEK2 gene on Chr17 was significantly increased. Our results are the first to demonstrate clonal expansion after the massive depletion of cells carrying BLV integration sites in a naturally infected cow.


Asunto(s)
Leucosis Bovina Enzoótica , Virus de la Leucemia Bovina , Animales , Femenino , Bovinos , Virus de la Leucemia Bovina/genética , Provirus/genética , Integración Viral , Progresión de la Enfermedad
2.
Retrovirology ; 19(1): 7, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585539

RESUMEN

BACKGROUND: The potential risk and association of bovine leukemia virus (BLV) with human remains controversial as it has been reported to be both positive and negative in human breast cancer and blood samples. Therefore, establishing the presence of BLV in comprehensive human clinical samples in different geographical locations is essential. RESULT: In this study, we examined the presence of BLV proviral DNA in human blood and breast cancer tissue specimens from Japan. PCR analysis of BLV provirus in 97 Japanese human blood samples and 23 breast cancer tissues showed negative result for all samples tested using long-fragment PCR and highly-sensitive short-fragment PCR amplification. No IgG and IgM antibodies were detected in any of the 97 human serum samples using BLV gp51 and p24 indirect ELISA test. Western blot analysis also showed negative result for IgG and IgM antibodies in all tested human serum samples. CONCLUSION: Our results indicate that Japanese human specimens including 97 human blood, 23 breast cancer tissues, and 97 serum samples were negative for BLV.


Asunto(s)
Anticuerpos Antivirales , ADN Viral , Virus de la Leucemia Bovina , Provirus , Anticuerpos Antivirales/aislamiento & purificación , Sangre/virología , Neoplasias de la Mama/virología , ADN Viral/aislamiento & purificación , Femenino , Humanos , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina M/aislamiento & purificación , Japón , Virus de la Leucemia Bovina/genética , Virus de la Leucemia Bovina/inmunología , Provirus/genética
3.
Viruses ; 14(5)2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35632737

RESUMEN

Bovine leukemia virus (BLV) infects cattle and integrates into host DNA, causing enzootic bovine leukosis (EBL), an aggressive B-cell lymphoma. Here, we developed a novel proviral DNA-capture sequencing (proviral DNA-capture-seq) method investigating BLV proviral integration in two B-cell lymphoma lines, BLSC-KU1 and BLSC-KU17, derived from BLV-infected cattle with EBL. We designed BLV-specific biotinylated probes to capture the provirus genome and enrich libraries for next-generation sequencing. Validation showed high specificity and efficient enrichment of target sequence reads as well as identification of three BLV proviral integration sites on BLV persistently infected FLK-BLV cells as a positive control. We successfully detected a single BLV proviral integration site on chromosome 19 of BLSC-KU1 and chromosome 9 of BLSC-KU17, which were confirmed by standard PCR and Sanger sequencing. Further, a defective provirus in BLSC-KU1 and complete BLV proviral sequence in BLSC-KU17 were confirmed using long PCR and sequencing. This is the first study to provide comprehensive information on BLV proviral structure and viral integration in BLSC-KU1 and BLSC-KU17. Moreover, the proposed method can facilitate understanding of the detailed mechanisms underlying BLV-induced leukemogenesis and may be used as an innovative tool to screen BLV-infected cattle at risk at an earlier stage than those that have already developed lymphoma.


Asunto(s)
Leucosis Bovina Enzoótica , Virus de la Leucemia Bovina , Linfoma de Células B , Animales , Bovinos , ADN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de la Leucemia Bovina/genética , Linfoma de Células B/genética , Linfoma de Células B/veterinaria , Provirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA