Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Microb Ecol ; 75(4): 985-996, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29032430

RESUMEN

Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.


Asunto(s)
Microbiota/fisiología , Salinidad , Plantas Tolerantes a la Sal/microbiología , Microbiología del Suelo , Suelo/química , Tamaricaceae/microbiología , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , China , ADN de Archaea/genética , ADN Bacteriano/genética , Ecosistema , Islas , Microbiota/genética , Nitrógeno/metabolismo , ARN Ribosómico 16S/genética
2.
Mycorrhiza ; 28(7): 665-677, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30105498

RESUMEN

Rapid responses of microbial biomass and community composition following a precipitation event have been reported for soil bacteria and fungi, but measurements characterizing ectomycorrhizal fungi remain limited. The response of ectomycorrhizal fungi after a precipitation event is crucial to understanding biogeochemical cycles and plant nutrition. Here, we examined changes in ectomycorrhizal formation, diversity, and community composition at the end of a summer drought and following precipitation events in a conifer-oak mixed forest under a semiarid, Mediterranean-type climate in CA, USA. To study the effects of different amounts of precipitation, a water addition treatment was also undertaken. Ectomycorrhizal fungal diversity and community composition changed within 6 days following precipitation, with increased simultaneous mortality and re-growth. Ectomycorrhizal diversity increased and community composition changed both in the natural rainfall (less than 10 mm) and water addition (50 mm) treatments, but larger decreases in ectomycorrhizal diversity were observed from 9 to 16 days after precipitation in the water addition treatment. The changes were primarily a shift in richness and abundance of Basidiomycota species, indicating higher drought sensitivity of Basidiomycota species compared with Ascomycota species. Our results indicate that ectomycorrhizal formation, diversity, and community composition rapidly respond to both precipitation events and to the amount of precipitation. These changes affect ecosystem functions, such as nutrient cycling, decomposition, and plant nutrient uptake, in semiarid regions.


Asunto(s)
Microbiota , Micorrizas/fisiología , Lluvia , Microbiología del Suelo , Biomasa , California , Bosques
3.
Mycorrhiza ; 28(7): 621-634, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30043258

RESUMEN

Communities of arbuscular mycorrhizal (AM) fungi in Mongolian grassland were characterized under gradients of grazing intensity at three study sites of different aridity: mountain forest steppe at Hustai National Park (Hustai), and desert steppe at Mandalgovi and Bulgan. Grazing intensity was classified into three categories: lightly grazed (LG), moderately grazed (MG), and heavily grazed (HG). With regard to floristic composition, grazing decreased the shoot biomass of Poaceae species, especially Stipa spp. Distinctness of the AM fungal communities was observed among the three study sites, but most of the AM fungal operational taxonomic units (OTUs) that comprised over 1.0% of the total reads were ubiquitous. This result indicates that the AM fungal communities may be derived from similar AM fungal floras in correspondence with environmental factors. The composition of AM fungal communities differed significantly among the grazing intensities at all study sites. The relative abundance of the most dominant AM fungal OTU of the LG plots decreased with an increase in grazing intensity at all study sites. The mean proportions of the most dominant AM fungal OTUs also decreased with increased grazing intensity at Hustai. Dominance by a single AM fungal taxon may be a typical ecological feature of the AM fungal symbiosis, and grazing disturbs AM fungal community structure.


Asunto(s)
Pradera , Micorrizas/fisiología , Microbiología del Suelo , Suelo/química , Animales , Clima Desértico , Conducta Alimentaria , Ganado/fisiología , Mongolia
4.
Mycorrhiza ; 22(6): 419-28, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22041997

RESUMEN

Arbuscular mycorrhizal fungi (AMF) have been observed in deep soil layers in arid lands. However, change in AMF community structure with soil depth and vertical distributions of the other root-associated microorganisms are unclear. Here, we examined colonization by AMF and dark septate fungi (DSF), as well as the community structure of AMF and endophytic fungi (EF) and endophytic bacteria (EB) in association with soil depth in a semiarid desert with shallow groundwater. Roots of Sabina vulgaris and soils were collected from surface to groundwater level at 20-cm intervals. Soil chemistry (water content, total N, and available P) and colonization of AMF and DSF were measured. Community structures of AMF, EF, and EB were examined by terminal restriction fragment length polymorphism analysis. AMF colonization decreased with soil depth, although it was mostly higher than 50%. Number of AMF phylotypes decreased with soil depth, but more than five phylotypes were observed at depths up to 100 cm. Number of AMF phylotypes had a significant and positive relationship with soil moisture level within 0-15% of soil water content. DSF colonization was high but limited to soil surface. Number of phylotypes of EF and EB were diverse even in deep soil layers, and the community composition was associated with the colonization and community composition of AMF. This study indicates that AMF species richness in roots decreases but is maintained in deep soil layers in semiarid regions, and change in AMF colonization and community structure associates with community structure of the other root-associated microorganisms.


Asunto(s)
Glomeromycota/fisiología , Juniperus/microbiología , Micorrizas/fisiología , Microbiología del Suelo , Bacterias/genética , Clima Desértico , Ecosistema , Endófitos/genética , Endófitos/fisiología , Hongos/genética , Hongos/fisiología , Glomeromycota/genética , Agua Subterránea , Micorrizas/genética , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN , Suelo/química
5.
Sci Rep ; 12(1): 14320, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35995806

RESUMEN

In this study, we examined the abiotic and biotic factors controlling the dynamics of soil respiration (Rs) while considering the zonal distribution of plant species in a coastal dune ecosystem in western Japan, based on periodic Rs data and continuous environmental data. We set four measurement plots with different vegetation compositions: plot 1 on bare sand; plot 2 on a cluster of young Vitex rotundifolia seedlings; plot 3 on a mixture of Artemisia capillaris and V. rotundifolia; and plot 4 on the inland boundary between the coastal vegetation zone and a Pinus thunbergii forest. Rs increased exponentially along with the seasonal rise in soil temperature, but summer drought stress markedly decreased Rs in plots 3 and 4. There was a significant positive correlation between the natural logarithm of belowground plant biomass and Rs in autumn. Our findings indicate that the seasonal dynamics of Rs in this coastal dune ecosystem are controlled by abiotic factors (soil temperature and soil moisture), but the response of Rs to drought stress in summer varied among plots that differed in dominant vegetation species. Our findings also indicated that the spatial dynamics of Rs are mainly controlled by the distribution of belowground plant biomass and autotrophic respiration.


Asunto(s)
Ecosistema , Suelo , Japón , Plantas , Respiración , Estaciones del Año
6.
J Plant Res ; 124(1): 75-83, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20549293

RESUMEN

Japanese horse chestnut (Aesculus turbinata: Hippocastanaceae) is one of the typical woody plants that grow in temperate riparian forests in the Japanese Archipelago. To analyze the phylogeography of this plant in the Japanese Archipelago, we determined cpDNA haplotypes for 337 samples from 55 populations covering the entire distribution range. Based on 1,313 bp of two spacers, we determined ten haplotypes that are distinguished from adjacent haplotypes by one or two steps. Most of the populations had a single haplotype, suggesting low diversity. Spatial analysis of molecular variance suggested three obvious phylogeographic structures in western Japan, where Japanese horse chestnut is scattered and isolated in mountainous areas. Conversely, no clear phylogeographic structure was observed from the northern to the southern limit of this species, including eastern Japan, where this plant is more common. Rare and private haplotypes were also found in southwestern Japan, where Japanese horse chestnuts are distributed sparsely. These findings imply that western Japan might have maintained a relatively large habitat for A. turbinata during the Quaternary climatic oscillations, while northerly regions could not.


Asunto(s)
Aesculus/genética , ADN de Cloroplastos/genética , Geografía , Haplotipos/genética , Filogeografía , Secuencia de Bases , Variación Genética , Japón , Datos de Secuencia Molecular , Nucleótidos/genética
7.
Sci Rep ; 10(1): 16760, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028915

RESUMEN

The roles of ethylene, jasmonic acid, and salicylic acid and their interactions in frankincense resin production in Boswellia sacra trees growing in the drylands of Oman were studied. On March 18 (Experiment 1) and September 17 (Experiment 2), 2018, 32-year-old B. sacra trees with multiple trunks were selected at the Agricultural Experiment Station, Sultan Qaboos University, Oman. Various lanolin pastes containing Ethrel, an ethylene-releasing compound; methyl jasmonate; sodium salicylate; and combinations of these compounds were applied to debarked wounds 15 mm in diameter on the trunks. After a certain period, the frankincense resin secreted from each wound was harvested and weighed. The anatomical characteristics of the resin ducts were also studied in the bark tissue near the upper end of each wound. The combination of Ethrel and methyl jasmonate greatly enhanced frankincense resin production within 7 days in both seasons. The application of methyl jasmonate alone, sodium salicylate alone or a combination of both did not affect resin production. These findings suggest a high possibility of artificial enhancement of frankincense resin production by the combined application of Ethrel and methyl jasmonate to B. sacra trees.


Asunto(s)
Boswellia , Ciclopentanos/química , Etilenos/química , Olíbano/química , Oxilipinas/química , Resinas de Plantas/química , Ácido Salicílico/química , Omán
8.
Ecology ; 101(3): e02963, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31872432

RESUMEN

Mycorrhizal fungi have considerable effects on soil carbon (C) storage, as they control the decomposition of soil organic matter (SOM), by modifying the amount of soil nitrogen (N) available for free-living microbes. Through their access to organic N, ectomycorrhizal (ECM) fungi compete with free-living soil microbes; this competition is thought to slow down SOM decomposition. However, arbuscular mycorrhizal (AM) fungi cannot decompose SOM, and therefore must wait for N to first be processed by free-living microbes. It is unclear what form of N the ECM fungi and free-living microbes compete for, or which microbial groups compete for N with ECM fungi. To investigate this, we focused on the N transformation steps (i.e., the degradation of high-molecular-weight organic matter, mineralization, and nitrification) and the microbes driving each step. Simple comparisons between AM forests and ECM forests are not sufficient to assert that mycorrhizal types would determine the N transformation steps in soil, because soil physiochemistry, which strongly affects N transformation steps, differs between the forests. We used an aridity gradient with large differences in soil moisture, pH, and SOM quantity and quality, to distinguish the mycorrhizal and physicochemical effects on N transformation. Soil samples (0-10 cm depth) were collected from AM-symbiotic black locust forests under three aridity levels, and from ECM-symbiotic oak forests under two aridity levels. Soil physicochemical properties, extractable N dynamics and abundance, composition, and function of soil microbial communities were measured. In ECM forests, the ammonia-oxidizing prokaryotic abundance was low, whereas that of ECM fungi was high, resulting in lower nitrate N content than in AM forests. Since ECM forests did not have lower saprotrophic fungal abundance and prokaryotic decompositional activity than the AM forests, the hypothesis that ECM fungi could reduce SOM decay and ammonification by free-living microbes, might not hold in ECM forests. However, the limitation of ECM fungi on nitrate N production would result in a feedback that will accelerate plant dependence on these fungi, thereby raising soil C storage through an increase in the ECM biomass and plant C investment in soils.


Asunto(s)
Micorrizas , Amoníaco , Bosques , Nitrógeno , Oxidación-Reducción , Suelo , Microbiología del Suelo
9.
Front Plant Sci ; 11: 583585, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519844

RESUMEN

Nitrogen (N) is an essential plant nutrient, and plants can take up N from several sources, including via mycorrhizal fungal associations. The N uptake patterns of understory plants may vary beneath different types of overstory trees, especially through the difference in their type of mycorrhizal association (arbuscular mycorrhizal, AM; or ectomycorrhizal, ECM), because soil mycorrhizal community and N availability differ beneath AM (non-ECM) and ECM overstory trees (e.g., relatively low nitrate content beneath ECM overstory trees). To test this hypothesis, we examined six co-existing AM-symbiotic understory tree species common beneath both AM-symbiotic black locust (non-ECM) and ECM-symbiotic oak trees of dryland forests in China. We measured AM fungal community composition of roots and natural abundance stable isotopic composition of N (δ15N) in plant leaves, roots, and soils. The root mycorrhizal community composition of understory trees did not significantly differ between beneath non-ECM and ECM overstory trees, although some OTUs more frequently appeared beneath non-ECM trees. Understory trees beneath non-ECM overstory trees had similar δ15N values in leaves and soil nitrate, suggesting that they took up most of their nitrogen as nitrate. Beneath ECM overstory trees, understory trees had consistently lower leaf than root δ15N, suggesting they depended on mycorrhizal fungi for N acquisition since mycorrhizal fungi transfer isotopically light N to host plants. Additionally, leaf N concentrations in the understory trees were lower beneath ECM than the non-ECM overstory trees. Our results show that, without large differences in root mycorrhizal community, the N uptake patterns of understory trees vary between beneath different overstory trees.

10.
Mycorrhiza ; 19(4): 231-238, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19015894

RESUMEN

The nitrogen-fixing tree black locust (Robinia pseudoacacia L.) seems to affect ectomycorrhizal (ECM) colonization and disease severity of Japanese black pine (Pinus thunbergii Parl.) seedlings. We examined the effect of black locust on the distribution of ECM and pathogenic fungi in soil. DNA was extracted from soil at depths of 0-5 and 5-10 cm, collected from the border between a Japanese black pine- and a black locust-dominated forest, and the distribution of these fungi was investigated by denaturing gradient gel electrophoresis. The effect of soil nutrition and pH on fungal distribution was also examined. Tomentella sp. 1 and Tomentella sp. 2 were not detected from some subplots in the Japanese black pine-dominated forest. Ectomycorrhizas formed by Tomentella spp. were dominant in black locust-dominated subplots and very little in the Japanese black pine-dominated forest. Therefore, the distribution may be influenced by the distribution of inoculum potential, although we could not detect significant relationships between the distribution of Tomentella spp. on pine seedlings and in soils. The other ECM fungi were detected in soils in subplots where the ECM fungi was not detected on pine seedlings, and there was no significant correlation between the distribution of the ECM fungi on pine seedlings and in soils. Therefore, inoculum potential seemed to not always influence the ECM community on roots. The distribution of Lactarius quieticolor and Tomentella sp. 2 in soil at a depth of 0-5 cm positively correlated with soil phosphate (soil P) and that of Tomentella sp. 2 also positively correlated with soil nitrogen (soil N). These results suggest the possibility that the distribution of inoculum potential of the ECM fungi was affected by soil N and soil P. Although the mortality of the pine seedlings was higher in the black locust-dominated area than in the Japanese black pine-dominated area, a pathogenic fungus of pine seedlings, Cylindrocladium pacificum, was detected in soil at depths of 0-5 and 5-10 cm from both these areas. This indicates that the disease severity of pine seedlings in this study was influenced by environmental conditions rather than the distribution of inoculum potential.


Asunto(s)
Hongos/fisiología , Micorrizas/fisiología , Pinus/microbiología , Robinia/microbiología , Microbiología del Suelo , Suelo/análisis , ADN Espaciador Ribosómico/genética , Electroforesis en Gel de Poliacrilamida , Hongos/genética , Hongos/aislamiento & purificación , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Micorrizas/genética , Micorrizas/aislamiento & purificación , Nitrógeno/análisis , Fosfatos/análisis
11.
Tree Physiol ; 38(8): 1166-1179, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29608763

RESUMEN

The mesic-origin plantation species Robinia pseudoacacia L. has been successfully grown in many arid land plantations around the world but often exhibits dieback and reduced growth due to drought. Therefore, to explore the behavior of this species under changing environmental conditions, we examined the relationship between ecophysiological traits, gas exchange and plant hydraulics over a 3-year period in trees that experienced reduced plant hydraulic conductance (Gp) in summer. We found that the transpiration rate, stomatal conductance (Gs) and minimum leaf water potential (Ψlmin) decreased in early summer in response to a decrease in Gp, and that Gp did not recover until the expansion of new leaves in spring. However, we did not observe any changes in the leaf area index or other ecophysiological traits at the leaf level in response to this reduction in Gp. Furthermore, model simulations based on measured data revealed that the canopy-scale photosynthetic rate (Ac) was 15-25% higher than the simulated Ac when it was assumed that Ψlmin remained constant after spring but almost the same as the simulated Ac when it was assumed that Gp remained high even after spring. These findings indicate that R. pseudoacacia was frequently exposed to a reduced Gp at the study site but offset its effects on Ac by plastically lowering Ψlmin to avoid experiencing any further reduction in Gp or Gs.


Asunto(s)
Carbono/metabolismo , Sequías , Robinia/fisiología , Agua/metabolismo , Ambiente , Japón , Hojas de la Planta/fisiología , Estaciones del Año , Árboles/fisiología
12.
Sci Rep ; 7: 45289, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28349918

RESUMEN

Similar land-use types usually have similar soil properties, and, most likely, similar microbial communities. Here, we assessed whether land-use types or soil chemical properties are the primary drivers of soil microbial community composition, and how changes in one part of the ecosystem affect another. We applied Ion Torrent sequencing to the bacterial and fungal communities of five different land-use (vegetation) types in the Loess Plateau of China. We found that the overall trend of soil quality was natural forest > plantation > bare land. Dominant bacterial phyla consisted of Proteobacteria (42.35%), Actinobacteria (15.61%), Acidobacteria (13.32%), Bacteroidetes (8.43%), and Gemmatimonadetes (6.0%). The dominant fungi phyla were Ascomycota (40.39%), Basidiomycota (38.01%), and Zygomycota (16.86%). The results of Canonical Correspondence Analysis (CCA) and Redundancy Analysis (RDA) based on land-use types displayed groups according to the land-use types. Furthermore, the bacterial communities were mainly organized by soil organic carbon (SOC). The fungal communities were mainly related to available phosphorus (P). The results suggested that the changes of land use type generated changes in soil chemical properties, controlling the composition of microbial community in the semiarid Loess Plateau region. The microbial community could be an indicator for soil quality with respect to ecological restoration.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/aislamiento & purificación , Microbiología del Suelo , Suelo/química , Acidobacteria/aislamiento & purificación , Actinobacteria/aislamiento & purificación , Agricultura , Ascomicetos/aislamiento & purificación , Basidiomycota/aislamiento & purificación , Carbono/análisis , China , Ecosistema , Bosques , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Proteobacteria/aislamiento & purificación
13.
Air Qual Atmos Health ; 10(3): 249-260, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28356997

RESUMEN

Asian dust events transport the airborne bacteria in Chinese desert regions as well as mineral particles and influence downwind area varying biological ecosystems and climate changes. However, the airborne bacterial dynamics were rarely investigated in the Gobi desert area, where dust events are highly frequent. In this study, air samplings were sequentially performed at a 2-m high above the ground at the sampling site located in desert area (Tsogt-Ovoo of Gobi desert; Mongolia 44.2304°N, 105.1700°E). During the dust event days, the bacterial cells and mineral particles increased to more than tenfold of concentrations. MiSeq sequencing targeting 16S ribosomal DNA revealed that the airborne bacteria in desert area mainly belonged to the classes Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Bacilli, Alpha-proteobacteria, Beta-proteobacteria, and Gamma-proteobacteria. The bacterial community structures were different between dust events and non-dust events. The air samples collected at the dust events indicated high abundance rates of Alpha-proteobacteria, which were reported to dominate on the leaf surfaces of plants or in the saline lake environments. After the dust events, the members of Firmicutes (Bacilli) and Bacteroidetes, which are known to form endospore and attach with coarse particles, respectively, increased their relative abundances in the air samples. Presumably, the bacterial compositions and diversities in atmosphere significantly vary during dust events, which carry some particles from grassland (phyllo-sphere), dry lake, and sand surfaces, as well as some bacterial populations such as Firmicutes and Bacteroidetes maintain in the atmosphere for longer time.

14.
J Gen Appl Microbiol ; 61(5): 193-202, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26582289

RESUMEN

Tamarix ramosissima is a tree species that is highly resistant to salt and drought. The Tamarix species survives in a broad range of environmental salt levels, and invades major river systems in southwestern United States. It may affect root-associated bacteria (RB) by increasing soil salts and nutrients. The effects of RB on host plants may vary even under saline conditions, and the relationship may be important for T. ramosissima. However, to the best of our knowledge, there have been no reports relating to T. ramosissima RB and its association with salinity and nutrient levels. In this study, we have examined this association and the effect of arbuscular mycorrhizal colonization of T. ramosissima on RB because a previous study has reported that colonization of arbuscular mycorrhizal fungi affected the rhizobacterial community (Marschner et al., 2001). T. ramosissima roots were collected from five locations with varying soil salinity and nutrient levels. RB community structures were examined by terminal restriction fragment (T-RF) length polymorphism, cloning, and sequencing analyses. The results suggest that RB richness, or the diversity of T. ramosissima, have significant negative relationships with electrical conductivity (EC), sodium concentration (Na), and the colonization of arbuscular mycorrhizal fungi, but have a significant positive relationship with phosphorus in the soil. However, at each T-RF level, positive correlations between the emergence of some T-RFs and EC or Na were observed. These results indicate that high salinity decreased the total number of RB species, but some saline-tolerant RB species multiplied with increasing salinity levels. The ordination scores of nonmetric multidimensional scale analysis of RB community composition show significant relationships with water content, calcium concentration, available phosphorus, and total nitrogen. These results indicate that the RB diversity and community composition of T. ramosissima are affected by soil salinity and nutrient levels. Sequence analysis detected one Bacteroidetes and eight Proteobacteria species. Most 16S rRNA gene sequences had high similarities with the bacteria isolated from saline conditions, indicating that at least a portion of the RB species observed in T. ramosissima was halotolerant.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Biota , Alimentos , Salinidad , Suelo/química , Tamaricaceae/microbiología , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Micorrizas/crecimiento & desarrollo , Filogenia , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sudoeste de Estados Unidos
15.
PLoS One ; 7(10): e47268, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23115642

RESUMEN

The biogeographical relationships between far-separated populations, in particular, those in the mainland and islands, remain unclear for widespread species in eastern Asia where the current distribution of plants was greatly influenced by the Quaternary climate. Deciduous Oriental oak (Quercus variabilis) is one of the most widely distributed species in eastern Asia. In this study, leaf material of 528 Q. variabilis trees from 50 populations across the whole distribution (Mainland China, Korea Peninsular as well as Japan, Zhoushan and Taiwan Islands) was collected, and three cpDNA intergenic spacer fragments were sequenced using universal primers. A total of 26 haplotypes were detected, and it showed a weak phylogeographical structure in eastern Asia populations at species level, however, in the central-eastern region of Mainland China, the populations had more haplotypes than those in other regions, with a significant phylogeographical structure (N(ST= )0.751> G(ST= )0.690, P<0.05). Q. variabilis displayed high interpopulation and low intrapopulation genetic diversity across the distribution range. Both unimodal mismatch distribution and significant negative Fu's F(S) indicated a demographic expansion of Q. variabilis populations in East Asia. A fossil calibrated phylogenetic tree showed a rapid speciation during Pleistocene, with a population augment occurred in Middle Pleistocene. Both diversity patterns and ecological niche modelling indicated there could be multiple glacial refugia and possible bottleneck or founder effects occurred in the southern Japan. We dated major spatial expansion of Q. variabilis population in eastern Asia to the last glacial cycle(s), a period with sea-level fluctuations and land bridges in East China Sea as possible dispersal corridors. This study showed that geographical heterogeneity combined with climate and sea-level changes have shaped the genetic structure of this wide-ranging tree species in East Asia.


Asunto(s)
ADN de Cloroplastos/genética , Geografía , Filogenia , Quercus/clasificación , Asia , Haplotipos , Reacción en Cadena de la Polimerasa , Quercus/genética
16.
Microbes Environ ; 24(3): 246-52, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-21566380

RESUMEN

The effects of a nitrogen-fixing tree, black locust (Robinia pseudoacacia), on the distribution of bacterial species were examined in a Japanese black pine (Pinus thunbergii) and black locust-dominated area. DNA was extracted from the soil at depths of 0-5 and 5-10 cm, collected at the border between a Japanese black pine-dominated forest and a black locust-dominated forest, and the distribution of bacterial species was investigated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities did not differ between the two forests. The distribution of some bacterial species correlated significantly with soil pH, soil carbon [C], soil nitrogen [N], and soil N/phosphate [P], but not with soil C/N or soil P. The distributional relationships between ectomycorrhizal (ECM) fungal species and bacterial species were also analyzed. A positive correlation was observed between the distribution of some ECM fungi and bacterial species. These bacteria may have some interactions with ECM fungi in the field.

17.
New Phytol ; 173(2): 322-34, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17204079

RESUMEN

In this study we examined the role of the nitrogen-fixing tree, Robinia pseudoacacia (black locust), in ectomycorrhizal (ECM) formation and ECM community of Pinus thunbergii (Japanese black pine) seedlings. Two 200 m(2) experimental plots were established at the border between a Japanese black pine- and a black locust-dominated area in a coastal forest. The ECM fungal community of pine seedlings was examined by PCR-RFLP and sequence analysis. We analyzed the relationship between ECM formation, ECM community, growth, and nutrient status of pine seedlings and environmental conditions using the Mantel test and structural equation model. Percentages of ECM root tips, the number of ECM fungal species and ECM diversity on pine seedlings decreased in the black locust-dominated area. Cenococcum geophilum and Russula spp. were dominant in the Japanese black pine-dominated area, whereas Tomentella spp. were dominant in the black locust-dominated area. Nitrogen (N) concentration in soils or pine seedlings strongly influenced the percentage of ECM root tips, the number of ECM fungal species and ECM fungal similarity. These results imply the long-term eutrophication caused by N-fixing trees can change ECM formation and ECM community structure.


Asunto(s)
Ecosistema , Micorrizas , Pinus/microbiología , Raíces de Plantas/microbiología , Plantones/microbiología , Biomasa , Eutrofización , Micorrizas/genética , Pinus/crecimiento & desarrollo , Robinia/microbiología , Plantones/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA