Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(4)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38050130

RESUMEN

Body movements influence brain-wide neuronal activities. In the sensory cortex, thalamocortical bottom-up inputs and motor-sensory top-down inputs are thought to affect the dynamics of membrane potentials (Vm ) of neurons and change their processing of sensory information during movements. However, direct perturbation of the axons projecting to the sensory cortex from other remote areas during movements has remained unassessed, and therefore the interareal circuits generating motor-related signals in sensory cortices remain unclear. Using a Gi/o -coupled opsin, eOPN3, we here inhibited interareal signals incoming to the whisker primary somatosensory barrel cortex (wS1) of awake male mice and tested their effects on whisking-related changes in neuronal activities in wS1. Spontaneous whisking in air induced the changes in spike rates of a subset of wS1 neurons, which were accompanied by depolarization and substantial reduction of slow-wave oscillatory fluctuations of Vm Despite an extensive innervation, inhibition of inputs from the whisker primary motor cortex (wM1) to wS1 did not alter the spike rates and Vm dynamics of wS1 neurons during whisking. In contrast, inhibition of axons from the whisker-related thalamus (wTLM) and the whisker secondary somatosensory cortex (wS2) to wS1 largely attenuated the whisking-related supra- and sub-threshold Vm dynamics of wS1 neurons. Notably, silencing inputs from wTLM markedly decreased the modulation depth of whisking phase-tuned neurons in wS1, while inhibiting wS2 inputs did not impact the whisking variable tuning of wS1 neurons. Thus, sensorimotor integration in wS1 during spontaneous whisking is predominantly facilitated by direct synaptic inputs from wTLM and wS2 rather than from wM1.


Asunto(s)
Neuronas , Corteza Somatosensorial , Ratones , Masculino , Animales , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Axones , Potenciales de la Membrana , Movimiento , Vibrisas/fisiología
2.
J Neurosci ; 40(21): 4103-4115, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32327530

RESUMEN

Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca2+ currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca2+ currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca2+ influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses.SIGNIFICANCE STATEMENT Synaptic mechanisms of general anesthesia remain unidentified. In rat brainstem slices, isoflurane inhibits excitatory transmitter release by blocking presynaptic Ca2+ channels and exocytic machinery, with the latter mechanism predominating in its inhibitory effect on high-frequency transmission. Both in slice and in vivo, isoflurane preferentially inhibits spike transmission induced by high-frequency presynaptic inputs. This low-pass filtering action of isoflurane likely plays a significant role in general anesthesia.


Asunto(s)
Anestésicos por Inhalación/administración & dosificación , Tronco Encefálico/efectos de los fármacos , Isoflurano/administración & dosificación , Neuronas/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Exocitosis/efectos de los fármacos , Femenino , Masculino , Ratones , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
3.
J Neurophysiol ; 126(6): 1959-1977, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34731061

RESUMEN

Barrington's nucleus (Bar), which controls micturition behavior through downstream projections to the spinal cord, contains two types of projection neurons, BarCRH and BarESR1, that have different functions and target different spinal circuitry. Both types of neurons project to the L6-S1 spinal intermediolateral (IML) nucleus, whereas BarESR1 neurons also project to the dorsal commissural nucleus (DCN). To obtain more information about the spinal circuits targeted by Bar, we used patch-clamp recording in spinal slices from adult mice in combination with optogenetic stimulation of Bar terminals. Recording of opto-evoked excitatory postsynaptic currents (oEPSCs) in 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine, 4-chlorobenzenesulfonate (DiI)-labeled lumbosacral preganglionic neurons (LS-PGNs) revealed that both Bar neuronal populations make strong glutamatergic monosynaptic connections with LS-PGNs, whereas BarESR1 neurons also elicited smaller-amplitude glutamatergic polysynaptic oEPSCs or polysynaptic opto-evoked inhibitory postsynaptic currents (oIPSCs) in some LS-PGNs. Optical stimulation of BarCRH and BarESR1 terminals also elicited monosynaptic oEPSCs and polysynaptic oIPSCs in sacral DCN neurons, some of which must include interneurons projecting to either the IML or ventral horn. Application of capsaicin increased opto-evoked firing during repetitive stimulation of Bar terminals through the modulation of spontaneous postsynaptic currents in LS-PGNs. In conclusion, our experiments have provided insights into the synaptic mechanisms underlying the integration of inputs from Bar to autonomic circuitry in the lumbosacral spinal cord that may control micturition.NEW & NOTEWORTHY Photostimulation of BarCRH or BarESR1 axons in the adult mouse spinal cord elicits excitatory or inhibitory postsynaptic responses in multiple cell types related to the autonomic nervous system including preganglionic neurons (PGNs) in the lumbosacral intermediolateral nucleus and interneurons in the lumbosacral dorsal commissure nucleus. Integration of excitatory inputs from Bar and from visceral primary afferents in PGNs may be important in the regulation of micturition behavior.


Asunto(s)
Fibras Autónomas Preganglionares/fisiología , Sistema Nervioso Autónomo/fisiología , Núcleo de Barrington/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Médula Espinal/fisiología , Animales , Fenómenos Electrofisiológicos/fisiología , Femenino , Masculino , Ratones , Optogenética , Técnicas de Placa-Clamp
4.
J Cell Sci ; 131(9)2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29632240

RESUMEN

Heat shock transcription factor 1 (HSF1) regulates the expression of a wide array of genes, controls the expression of heat shock proteins (HSPs) as well as cell growth. Although acute depletion of HSF1 induces cellular senescence, the underlying mechanisms are poorly understood. Here, we report that HSF1 depletion-induced senescence (HDIS) of human diploid fibroblasts (HDFs) was independent of HSP-mediated proteostasis but dependent on activation of the p53-p21 pathway, partly because of the increased expression of dehydrogenase/reductase 2 (DHRS2), a putative MDM2 inhibitor. We observed that HDIS occurred without decreased levels of major HSPs or increased proteotoxic stress in HDFs. Additionally, VER155008, an inhibitor of HSP70 family proteins, increased proteotoxicity and suppressed cell growth but failed to induce senescence. Importantly, we found that activation of the p53-p21 pathway resulting from reduced MDM2-dependent p53 degradation was required for HDIS. Furthermore, we provide evidence that increased DHRS2 expression contributes to p53 stabilization and HDIS. Collectively, our observations uncovered a molecular pathway in which HSF1 depletion-induced DHRS2 expression leads to activation of the MDM2-p53-p21 pathway required for HDIS.


Asunto(s)
Fibroblastos/metabolismo , Factores de Transcripción del Choque Térmico/deficiencia , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , Proliferación Celular , Senescencia Celular/fisiología , Diploidia , Fibroblastos/citología , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/genética
5.
J Cell Sci ; 131(12)2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29777036

RESUMEN

Growth of precancerous and cancer cells relies on their tolerance of oncogene-induced replication stress (RS). Translesion synthesis (TLS) plays an essential role in the cellular tolerance of various types of RS and bypasses replication barriers by employing specialized polymerases. However, limited information is available about the role of TLS polymerases in oncogene-induced RS. Here, we report that Polη, a Y-family TLS polymerase, promotes cellular tolerance of Myc-induced RS. Polη was recruited to Myc-induced RS sites, and Polη depletion enhanced the Myc-induced slowing and stalling of replication forks and the subsequent generation of double-strand breaks (DSBs). Overexpression of a catalytically dead Polη also promoted Myc-induced DSB formation. In the absence of Polη, Myc-induced DSB formation depended on MUS81-EME2 (the S-phase-specific endonuclease complex), and concomitant depletion of MUS81-EME2 and Polη enhanced RS and cell death in a synergistic manner. Collectively, these results indicate that Polη facilitates fork progression during Myc-induced RS, thereby helping cells tolerate the resultant deleterious effects. Additionally, the present study highlights the possibility of a synthetic sickness or lethality between Polη and MUS81-EME2 in cells experiencing Myc-induced RS.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Genes myc , Neoplasias/enzimología , Neoplasias Óseas/enzimología , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Puntos de Control del Ciclo Celular , Muerte Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Melanoma/enzimología , Melanoma/genética , Neoplasias/genética , Neoplasias/patología , Osteosarcoma/enzimología , Osteosarcoma/genética , Osteosarcoma/patología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
Rinsho Ketsueki ; 60(5): 403-407, 2019.
Artículo en Japonés | MEDLINE | ID: mdl-31168005

RESUMEN

Fanconi anemia (FA) is a genetic disorder characterized by progressive bone marrow failure, increased susceptibility to leukemia and cancer, and genomic instabilities. Protein products encoded by 22 FA genes, identified till date, cooperate in a molecular pathway called the FA pathway to repair DNA interstrand cross-links induced by chemotherapeutic agents, such as mitomycin C and cisplatin. An accumulating number of studies have shown several new functional aspects of the FA pathway, particularly in the context of the pathogenesis of bone marrow failure. This review focuses on the following topics: (1) aldehydes as intrinsic interstrand cross-linkers; (2) cytokine-induced hematopoietic stress; (3) increased transforming growth factor-ß signaling; (4) mitochondrial functions of FA proteins. These findings are expected to offer new therapeutic opportunities for bone marrow failure in FA.


Asunto(s)
Proteínas del Grupo de Complementación de la Anemia de Fanconi , Anemia de Fanconi , Aldehídos , Citocinas , Sistema Hematopoyético , Humanos , Mitocondrias , Transducción de Señal , Factor de Crecimiento Transformador beta
7.
J Neurosci ; 37(45): 10826-10834, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29118211

RESUMEN

A substantial portion of our sensory experience happens during active behaviors such as walking around or paying attention. How do sensory systems work during such behaviors? Neural processing in sensory systems can be shaped by behavior in multiple ways ranging from a modulation of responsiveness or sharpening of tuning to a dynamic change of response properties or functional connectivity. Here, we review recent findings on the modulation of sensory processing during active behaviors in different systems: insect vision, rodent thalamus, and rodent sensory cortices. We discuss the circuit-level mechanisms that might lead to these modulations and their potential role in sensory function. Finally, we highlight the open questions and future perspectives of this exciting new field.


Asunto(s)
Movimiento/fisiología , Sensación/fisiología , Atención/fisiología , Cognición/fisiología , Humanos , Locomoción/fisiología
8.
Mol Cell ; 37(1): 79-89, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20129057

RESUMEN

DNA polymerase eta (Pol eta) is a member of the mammalian Y family polymerases and performs error-free translesion synthesis across UV-damaged DNA. For this function, Pol eta accumulates in nuclear foci at replication stalling sites via its interaction with monoubiquitinated PCNA. However, little is known about the posttranslational control mechanisms of Pol eta, which regulate its accumulation in replication foci. Here, we report that the molecular chaperone Hsp90 promotes UV irradiation-induced nuclear focus formation of Pol eta through control of its stability and binding to monoubiquitinated PCNA. Our data indicate that Hsp90 facilitates the folding of Pol eta into an active form in which PCNA- and ubiquitin-binding regions are functional. Furthermore, Hsp90 inhibition potentiates UV-induced cytotoxicity and mutagenesis in a Pol eta-dependent manner. Our studies identify Hsp90 as an essential regulator of Pol eta-mediated translesion synthesis.


Asunto(s)
Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas HSP90 de Choque Térmico/fisiología , Benzoquinonas/farmacología , Línea Celular , Daño del ADN , ADN Polimerasa Dirigida por ADN/análisis , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Lactamas Macrocíclicas/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Rayos Ultravioleta
9.
Opt Express ; 25(13): 15010-15027, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28788936

RESUMEN

We selected appropriate indices for color rendition and determined their recommended values for ultra-high-definition television (UHDTV) production using white LED lighting. Since the spectral sensitivities of UHDTV cameras can be designed to approximate the ideal spectral sensitivities of UHDTV colorimetry, they have more accurate color reproduction than HDTV cameras, and thus the color-rendering properties of the lighting are critical. Comparing images taken under white LEDs with conventional color rendering indices (Ra, R9-14) and recently proposed methods for evaluating color rendition of CQS, TM-30, Qa, and SSI, we found the combination of Ra and R9 appropriate. For white LED lighting, Ra ≥ 90 and R9 ≥ 80 are recommended for UHDTV production.

10.
Opt Express ; 22(5): 6040-6, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24663939

RESUMEN

The slanted-edge method specified in ISO Standard 12233, which measures the modulation transfer function (MTF) by analyzing an image of a slightly slanted knife-edge target, is not robust against noise because it takes the derivative of each data line in the edge-angle estimation. We propose here a modified method that estimates the edge angle by fitting a two-dimensional function to the image data. The method has a higher accuracy, precision, and robustness against noise than the ISO 12233 method and is applicable to any arbitrary pixel array, enabling a multidirectional MTF estimate in a single measurement of a starburst image.

11.
Methods Mol Biol ; 2794: 245-257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630234

RESUMEN

Measuring the membrane potential dynamics of neurons offers a comprehensive understanding of the molecular and cellular mechanisms that form their spiking activity, thus playing a crucial role in unraveling the mechanistic processes governing brain function. Techniques for intracellular recordings of membrane potentials pioneered in the 1940s have witnessed significant advancements since their inception. Among these, whole-cell patch-clamp recording has emerged as a leading method for measuring neuronal membrane potentials due to its high stability and broad applicability ranging from cultured cells to brain slices and even behaving animals. This chapter provides a detailed protocol to acquire stable whole-cell recordings from neurons in the cerebral cortex of awake, head-restrained mice. Significant enhancements to our protocol include implanting a metal head-post using adhesive resin cement and preparing a recording pipette with a long shank for targeting deeper brain regions. This protocol, once implemented, enables whole-cell recordings up to 2.5 mM beneath the cortical surface.


Asunto(s)
Encéfalo , Neuronas , Animales , Ratones , Técnicas de Placa-Clamp , Corteza Cerebral , Potenciales de la Membrana
12.
Front Neurosci ; 18: 1349366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784098

RESUMEN

Although dietary behaviors are affected by neuropsychiatric disorders, various environmental conditions can have strong effects as well. We found that mice under multiple stresses, including social isolation, intermittent high-fat diet, and physical restraint, developed feeding behavior patterns characterized by a deviated bait approach (fixated feeding). All the tested stressors affected dopamine release at the nucleus accumbens (NAcc) shell and dopamine normalization reversed the feeding defects. Moreover, inhibition of dopaminergic activity in the ventral tegmental area that projects into the NAcc shell caused similar feeding pattern aberrations. Given that the deviations were not consistently accompanied by changes in the amount consumed or metabolic factors, the alterations in feeding behaviors likely reflect perturbations to a critical stress-associated pathway in the mesolimbic dopamine system. Thus, deviations in feeding behavior patterns that reflect reward system abnormalities can be sensitive biomarkers of psychosocial and physical stress.

13.
Opt Express ; 21(3): 3474-85, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23481805

RESUMEN

Integral three-dimensional (3D) television based on integral imaging requires huge amounts of information. Previously, we constructed an Integral 3D television using Super Hi-Vision (SHV) technology, with 7680 pixels horizontally and 4320 pixels vertically. We report on improved image quality through the development of video system with an equivalent of 8000 scan lines for use with Integral 3D television. We conducted experiments to evaluate the resolution of 3D images using an experimental setup and were able to show that by using the pixel-offset method we have eliminated aliasing produced by full-resolution SHV video equipment. We confirmed that the application of the pixel-offset method to integral 3D television is effective in increasing the resolution of reconstructed images.


Asunto(s)
Aumento de la Imagen/instrumentación , Imagenología Tridimensional/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Televisión/instrumentación , Grabación en Video/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Integración de Sistemas
14.
Opt Lett ; 38(12): 2044-6, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23938971

RESUMEN

We have developed a compact integral three-dimensional (3D) imaging equipment that positions the lens array and image sensor in close proximity to each other. In the conventional scheme, a camera lens is used to project the elemental images generated by the lens array onto the image sensor. In contrast, the imaging equipment presented here combines the lens array and image sensor into one unit and makes no use of a camera lens. This scheme eliminates the resolution deterioration and distortion caused by the use of a camera lens and improves, in principle, the quality of the reconstructed 3D image. We captured objects with this imaging equipment and displayed the reconstructed 3D images using display equipment consisting of a liquid crystal panel and a lens array. The reconstructed 3D images were found to have appropriate motion parallax.

15.
Curr Biol ; 33(16): 3436-3451.e7, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37536343

RESUMEN

During reward-based learning tasks, animals make orofacial movements that globally influence brain activity at the timings of reward expectation and acquisition. These orofacial movements are not explicitly instructed and typically appear along with goal-directed behaviors. Here, we show that reinforcing optogenetic stimulation of dopamine neurons in the ventral tegmental area (oDAS) in mice is sufficient to induce orofacial movements in the whiskers and nose without accompanying goal-directed behaviors. Pavlovian conditioning with a sensory cue and oDAS elicited cue-locked and oDAS-aligned orofacial movements, which were distinguishable by a machine-learning model. Inhibition or knockout of dopamine D1 receptors in the nucleus accumbens inhibited oDAS-induced motion but spared cue-locked motion, suggesting differential regulation of these two types of orofacial motions. In contrast, inactivation of the whisker primary motor cortex (wM1) abolished both types of orofacial movements. We found specific neuronal populations in wM1 representing either oDAS-aligned or cue-locked whisker movements. Notably, optogenetic stimulation of wM1 neurons successfully replicated these two types of movements. Our results thus suggest that accumbal D1-receptor-dependent and -independent neuronal signals converge in the wM1 for facilitating distinct uninstructed orofacial movements during a reward-based learning task.


Asunto(s)
Núcleo Accumbens , Área Tegmental Ventral , Ratones , Animales , Núcleo Accumbens/fisiología , Área Tegmental Ventral/fisiología , Movimiento , Neuronas Dopaminérgicas/fisiología , Receptores de Dopamina D1 , Recompensa
16.
Pediatr Transplant ; 16(4): 340-5, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22404423

RESUMEN

SCT from HLA-identical sibling donors is generally associated with an excellent survival in FA patients if performed prior to the development of MDS or leukemia. However, the optimal conditioning regimen has not been defined. We report here our experience with 15 Japanese FA patients who underwent HLA-matched sibling donor SCT. The aim of this study is to compare radiation-based conditioning to Flu-based conditioning for FA patients in a Japanese population where the T-cell somatic mosaicism is higher than in the Caucasian population. Eight patients (a-group) received a radiation-based conditioning (500-600 cGy of thoracoabdominal/TBI) with CY dose modification (20-120 mg/kg), and ATG; two patients exhibited rejection. Seven patients (b-group) received CY (40 mg/kg), 150-180 mg/m(2) of Flu, and ATG. Durable engraftment was demonstrated in all patients. In FA patients, Flu-based conditioning may allow stable engraftment in matched sibling donor transplantation without radiation, even in patients with T-cell somatic mosaicism.


Asunto(s)
Trasplante de Médula Ósea , Trasplante de Células Madre de Sangre del Cordón Umbilical , Anemia de Fanconi/cirugía , Mosaicismo , Trasplante de Células Madre , Acondicionamiento Pretrasplante/métodos , Adolescente , Niño , Preescolar , Quimerismo , Ciclofosfamida/uso terapéutico , Anemia de Fanconi/genética , Femenino , Estudios de Seguimiento , Rechazo de Injerto/prevención & control , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Inmunosupresores/uso terapéutico , Lactante , Masculino , Linfocitos T , Resultado del Tratamiento , Vidarabina/análogos & derivados , Vidarabina/uso terapéutico , Adulto Joven
17.
Cancer Gene Ther ; 29(2): 225-240, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33619341

RESUMEN

Major histocompatibility complex class II (MHC II) is important for the adaptive immune response because MHC II presents processed antigens to a cluster of differentiation 4 (CD4)-positive T-cells. Conventional doses of chemotherapeutic agents induce tumor cell death by causing DNA double-strand breaks (DSBs). However, cellular responses caused by sub-lethal doses of chemotherapeutic agents are poorly understood. In this study, using low doses of chemotherapeutic agents, we showed that DSBs enhanced the expression of MHC II on cells that originate from antigen-presenting cells (APCs). These agents induced the MHC class II transactivator (CIITA), the master regulator of MHC II, and interferon regulatory factor 1 (IRF1), a transcription factor for CIITA. Short hairpin RNA against IRF1 suppressed chemotherapeutic agent-induced CIITA expression, whereas exogenous expression of IRF1 induced CIITA. Inhibition of ataxia-telangiectasia mutated (ATM), a DSB-activated kinase, suppressed induction of IRF1, CIITA, and MHC II. Similar results were observed by inhibiting NF-κB, a downstream target of ATM. These results suggest that DSBs induce MHC II activity via the ATM-NF-κB-IRF1-CIITA pathway in cells that intrinsically present antigens. Additionally, chemotherapeutic agents induced T-cell regulatory molecules. Our findings suggest that chemotherapeutic agents enhance the antigen presentation activity of APCs for T-cell activation.


Asunto(s)
Ataxia Telangiectasia , Roturas del ADN de Doble Cadena , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Interferón gamma/genética , Complejo Mayor de Histocompatibilidad , Proteínas Nucleares , Regiones Promotoras Genéticas , Transactivadores
18.
Sci Rep ; 12(1): 3719, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260655

RESUMEN

Titanium has a significant potential for the cryogenic industrial fields such as aerospace and liquefied gas storage and transportation due to its excellent low temperature properties. To develop and advance the technologies in cryogenic industries, it is required to fully understand the underlying deformation mechanisms of Ti under the extreme cryogenic environment. Here, we report a study of the lattice behaviour in grain families of Grade 2 CP-Ti during in-situ neutron diffraction test in tension at temperatures of 15-298 K. Combined with the neutron diffraction intensity analysis, EBSD measurements revealed that the twinning activity was more active at lower temperature, and the behaviour was complicated with decreasing temperature. The deviation of linearity in the lattice strains was caused by the load-redistribution between plastically soft and hard grain families, resulting in the three-stage hardening behaviour. The lattice strain behaviour further deviated from linearity with decreasing temperature, leading to the transition of plastically soft-to-hard or hard-to-soft characteristic of particular grain families at cryogenic temperature. The improvement of ductility can be attributed to the increased twinning activity and a significant change of lattice deformation behaviour at cryogenic temperature.

19.
J Neurosci ; 30(2): 655-60, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071530

RESUMEN

The synaptic protein interaction (synprint) site of the voltage-gated Ca(2+) channel (VGCC) alpha1 subunit can interact with proteins involved in exocytosis, and it is therefore thought to be essential for exocytosis of synaptic vesicles. Here we report that the synprint site can also directly bind the mu subunit of AP-2, an adaptor protein for clathrin-mediated endocytosis, in competition with the synaptotagmin 1 (Syt 1) C2B domain. In brain lysates, the AP-2-synprint interaction occurred over a wide range of Ca(2+) concentrations but was inhibited at high Ca(2+) concentrations, in which Syt 1 interacted with synprint site. At the calyx of Held synapse in rat brainstem slices, direct presynaptic loading of the synprint fragment peptide blocked endocytic, but not exocytic, membrane capacitance changes. We propose that the VGCC synprint site is involved in synaptic vesicle endocytosis, rather than exocytosis, in the nerve terminal, via Ca(2+)-dependent interactions with AP-2 and Syt.


Asunto(s)
Canales de Calcio/metabolismo , Endocitosis/fisiología , Neuronas/fisiología , Sinapsis/metabolismo , Vesículas Sinápticas/fisiología , Animales , Animales Recién Nacidos , Sitios de Unión/fisiología , Fenómenos Biofísicos/efectos de los fármacos , Fenómenos Biofísicos/genética , Calcio/metabolismo , Calcio/farmacología , Canales de Calcio/líquido cefalorraquídeo , Canales de Calcio/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Espectrometría de Masas , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Proteína Básica de Mielina/metabolismo , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Mutación Puntual/fisiología , Terminales Presinápticos/metabolismo , Unión Proteica/genética , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión , Relación Estructura-Actividad , Colículos Superiores/citología , Sinaptotagmina I/metabolismo
20.
Front Mol Biosci ; 8: 771717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805279

RESUMEN

Microbial rhodopsins widely used for optogenetics are sensitive to light in the visible spectrum. As visible light is heavily scattered and absorbed by tissue, stimulating light for optogenetic control does not reach deep in the tissue irradiated from outside the subject body. Conventional optogenetics employs fiber optics inserted close to the target, which is highly invasive and poses various problems for researchers. Recent advances in material science integrated with neuroscience have enabled remote optogenetic control of neuronal activities in living animals using up- or down-conversion phosphors. The development of these methodologies has stimulated researchers to test novel strategies for less invasive, wireless control of cellular functions in the brain and other tissues. Here, we review recent reports related to these new technologies and discuss the current limitations and future perspectives toward the establishment of non-invasive optogenetics for clinical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA