RESUMEN
High-throughput analyses of multitarget markers can facilitate rapid and accurate clinical diagnosis. Suspension array assays, a flow cytometry-based analysis technology, are among some of the most promising multicomponent analysis methods for clinical diagnostics and research purposes. These assays are appropriate for examining low-volume, complex samples having trace amounts of analytes due to superior elimination of background. Physical shape is an important and promising code system, which uses a set of visually distinct patterns to identify different assay particles. Here, we presented a morphology recognizable suspension arrays based on the microorganisms with different morphologies. In this study, UiO-66-NH2 (UiO stands for University of Oslo) metal-organic frameworks (MOFs), was wrapped on the microorganism surface to form an innovative class of microorganism@UiO-66-NH2 composites for suspension array assays. The use of microorganisms endowed composites barcoding ability with their different morphology and size. Meanwhile, the UiO-66-NH2 provided a stable rigid shell, large specific surface area, and metal(IV) ions with multiple binding sites, which could simplify the protein immobilization procedure and enhance detection sensitivity. With this method, simultaneous detection of three colorectal cancer-related microRNA (miRNA), including miRNA-21, miRNA-17, and miRNA-182, could be easily achieved with femtomolar sensitivity by using a commercial flow cytometer. The synergy between microorganisms and MOFs make the composites a prospective barcoding candidate with excellent characteristics for multicomponent analysis, offering great potential for the development of high throughput and accurate diagnostics.
Asunto(s)
Neoplasias Colorrectales/diagnóstico , Escherichia coli/química , Citometría de Flujo , Estructuras Metalorgánicas/química , MicroARNs/análisis , Compuestos Organometálicos/química , Ácidos Ftálicos/química , HumanosRESUMEN
At present, little is known about the RNA metabolism driven by the RNA degradosome in cyanobacteria. RNA helicase and enolase are the common components of the RNA degradosome in many bacteria. Here, we provide evidence that both enolase and the DEAD-box RNA helicase CrhB can interact with RNase E in Anabaena (Nostoc) sp. strain PCC 7120 (referred to here as PCC 7120). Furthermore, we found that the C-terminal domains of CrhB and AnaEno (enolase of PCC 7120) are required for the interaction, respectively. Moreover, their recognition motifs for AnaRne (RNase E of PCC 7120) turned out to be located in the N-terminal catalytic domain, which is obviously different from those identified previously in Proteobacteria We also demonstrated in enzyme activity assays that CrhB can induce AnaRne to degrade double-stranded RNA with a 5' tail. Furthermore, we investigated the localization of CrhB and AnaRne by green fluorescent protein (GFP) translation fusion in situ and found that they both localized in the center of the PCC 7120 cytoplasm. This localization pattern is also different from the membrane binding of RNase E and RhlB in Escherichia coli Together with the previous identification of polynucleotide phosphorylase (PNPase) in PCC 7120, our results show that there is an RNA degradosome-like complex with a different assembly mechanism in cyanobacteria.IMPORTANCE In all domains of life, RNA turnover is important for gene regulation and quality control. The process of RNA metabolism is regulated by many RNA-processing enzymes and assistant proteins, where these proteins usually exist as complexes. However, there is little known about the RNA metabolism, as well as about the RNA degradation complex. In the present study, we described an RNA degradosome-like complex in cyanobacteria and revealed an assembly mechanism different from that of E. coli Moreover, CrhB could help RNase E in Anabaena sp. strain PCC 7120 degrade double-stranded RNA with a 5' tail. In addition, CrhB and AnaRne have similar cytoplasm localizations, in contrast to the membrane localization in E. coli.
Asunto(s)
Anabaena/genética , Proteínas Bacterianas/genética , ARN Helicasas DEAD-box/genética , Endorribonucleasas/genética , Fosfopiruvato Hidratasa/genética , Anabaena/enzimología , Proteínas Bacterianas/metabolismo , ARN Helicasas DEAD-box/metabolismo , Endorribonucleasas/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismoRESUMEN
Herein, spore@Cu-trimesic acid (TMA) biocomposites were prepared by self-assembling Cu-based metal-organic framework on the surface of Bacillus velezensis spores. The laccase-like activity of spore@Cu-TMA biocomposites was enhanced by 14.9 times compared with that of pure spores due to the reaction of Cu2+ ions with laccase on the spore surface and the microporous structure of Cu-TMA shell promoting material transport and increasing substrate accessibility. Spore@Cu-TMA rapidly oxidized and transformed 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) into ABTSâ+ without using H2O2. Under optimum conditions, the ABTSâ+ could be stored for 21 days at 4 °C and 7 days at 37 °C without the addition of any stabilizers, allowing for the large-scale preparation and long-term storage of ABTSâ+. The ultrarobust stable ABTSâ+ obtained with the use of Cu-TMA could effectively reduce the "back reaction" by preventing the leaching of the metabolites released by the spores. On the basis of these findings, a rapid, low-cost, and eco-friendly colorimetric platform was successfully developed for the detection of antioxidant capacity. Determination of antioxidant capacity for several antioxidants such as caffeic acid, glutathione, and Trolox revealed their corresponding limits of detection at 4.83, 8.89, and 7.39 nM, respectively, with linear ranges of 0.01-130, 0.01-140, and 0.01-180 µM, respectively. This study provides a facile way to prepare ultrarobust stable ABTSâ+ and presents a potential application of spore@Cu-TMA biocomposites in food detection and bioanalysis.
Asunto(s)
Antioxidantes , Bacillus , Benzotiazoles , Cobre , Esporas Bacterianas , Ácidos Sulfónicos , Cobre/química , Ácidos Sulfónicos/química , Benzotiazoles/química , Antioxidantes/química , Antioxidantes/análisis , Esporas Bacterianas/química , Bacillus/enzimología , Lacasa/química , Lacasa/metabolismo , Estructuras Metalorgánicas/química , Ácidos Tricarboxílicos/químicaRESUMEN
Amorphous metal-organic framework (aMOF)-based materials have attracted considerable attention as an emerging class of nanomaterials. Herein, novel microorganisms@aMIL-125 (Ti) composites including yeast@aMIL-125 (Ti), PCC 6803@aMIL-125 (Ti), and Escherichia coli@aMIL-125 (Ti) composites were respectively synthesized by self-assembling aMOFs on the microorganisms' surface. The functional groups on the microorganisms' surface induced structural defects and participated in the formation of aMIL-125 (Ti) composites. Finally, the application of microorganisms@aMIL-125 (Ti) composites for the removal of glyphosate from aqueous solution was selected as a model reaction to illustrate their potential for environmental protection. The present method is not only economical but also has other advantages including ease of operation, environmentally friendly assay, and high adsorption. The maximum adsorption capacity of aMIL-125 (Ti) was 1096.25 mg g-1, which was 1.74 times that of crystalline MIL-125 (Ti). Therefore, the microorganisms@aMOFs composites will have broad application prospects in energy storage, drug delivery, catalysis, adsorbing toxic substances, sensing, encapsulating and delivering enzymes, and in other fields.
RESUMEN
The use of color-encoded microspheres for a bead-based assay has attracted increasing attention for high-throughput multiplexed bioassays. A fluorescent PCC 6803@ZIF-8 composite was prepared as a bead-based assay platform by a self-assembled zeolitic imidazolate framework (ZIF-8) on the surface of inactivated PCC 6803 cells. The composite fluorescence owing to the presence of pigment proteins in PCC 6803 could be gradually bleached with the prolongation of the ultraviolet light irradiation time. The composites with different fluorescence intensities were therefore obtained as encoded microspheres for the multiplexed assay. ZIF-8 provides a stable, rigid shell and a large specific surface area for composites, which prevent the composites from breakage during use and storage, simplify the protein immobilization procedure, reduce non-specific adsorption, and enhance the detection sensitivity. The encoded composites were successfully used to detect multiple DNA insertion sequences of Mycobacterium tuberculosis. The presented strategy offers an innovative color-encoding method for high-throughput multiplexed bioassays without the need of using chemically synthesized fluorescent materials.
Asunto(s)
Zeolitas , Adsorción , Bioensayo , Biomarcadores , MicroesferasRESUMEN
E. coli@UiO-67 composites were obtained using an effective and simple self-assembly method. The composites showed unique properties as a remarkable and recyclable adsorbent for the efficient removal of bisphenol A (BPA) from water with a high adsorption capacity (402.930 mg g-1). The increase in pore size is a key factor why E. coli@UiO-67 composites maintained high capacity. The reason might be due to that the composites with large pore sizes and defects could effectively improve mass transport and active molecular metal sites. The adsorption of BPA is a chemisorption process due to the Zr-OH groups in UiO-67 exhibit affinity toward BPA molecules, π-π interaction, and electrostatic attraction. The adsorption efficiency remained at 82.5% after 15 cycles without any remarkable changes in the PXRD patterns of E. coli@UiO-67. Moreover, the use of microorganism-loading MOFs could reduce the cost to at least 50% and minimize secondary pollution through nanoscale MOFs usage reduction. The developed composites have advantages, including low-cost, high adsorption capacity, easy to be separated and regenerated from aqueous solution, a large number of cycles, short adsorption equilibrium time, and stability, showing excellent application prospects. The presented strategy would be a potentially promising way to produce novel MOFs-based adsorbents with high-performance to control environmental pollution from wastewater.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Compuestos de Bencidrilo , Escherichia coli , Estructuras Metalorgánicas , FenolesRESUMEN
RNase E is an endoribonuclease and plays a central role in RNA metabolism. Cyanobacteria, as ancient oxygen-producing photosynthetic bacteria, also contain RNase E homologues. Here, we introduced mutations into the S1 subdomain (F53A), the 5'-sensor subdomain (R160A), and the DNase I subdomain (D296A) according to the key activity sites of Escherichia coli RNase E. The results of degradation assays demonstrated that Asp296 is important to RNase E activity in Anabaena sp. PCC 7120 (hereafter PCC 7120). The docking model of RNase E in PCC 7120 (AnaRne) and RNA suggested a possible recognition mechanism of AnaRne to RNA. Moreover, overexpression of AnaRne and its N-terminal catalytic domain (AnaRneN) in vivo led to the abnormal cell division and inhibited the growth of PCC 7120. The quantitative analysis showed a significant decrease of ftsZ transcription in the case of overexpression of AnaRne or AnaRneN and ftsZ mRNA could be directly degraded by AnaRne through degradation assays in vitro, indicating that AnaRne was related to the expression of ftsZ and eventually affected cell division. In essence, our studies expand the understanding of the structural and functional evolutionary basis of RNase E and lay a foundation for further analysis of RNA metabolism in cyanobacteria.
Asunto(s)
Anabaena/enzimología , Endorribonucleasas/química , Endorribonucleasas/metabolismo , ARN Bacteriano/metabolismo , Anabaena/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biocatálisis , Dominio Catalítico , División Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Endorribonucleasas/genética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Mutación , ARN Mensajero/metabolismo , Transcripción GenéticaRESUMEN
In Pseudomonas putida KT2440, the exopolysaccharide Pea is associated with biofilm stability and pellicle formation; however, little is known about its regulatory pathway. In this study, we identified that the gene cluster pea was transcribed from 25 bp upstream of the operon and the stationary phase alternative sigma factor RpoS regulated the transcription of pea. When RpoS was absent, another sigma factor, likely the housekeeping sigma factor RpoD, could also mediate pea transcription but at a low level. The function of Pea polysaccharide was further confirmed to be necessary for full production of biofilm, formation of pellicle and c-di-GMP-dependent wrinkly colony morphology. Additionally, evidences were provided to demonstrate that the transcriptional regulator AmrZ was a negative regulator for pea expression. DNase I footprinting studies verified that AmrZ bound directly to the site overlapping the pea promoter, which might interfere with the binding of RNA polymerase to the promoter and resulted in inhibition of transcription initiation.