Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Br J Nutr ; : 1-16, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38826079

RESUMEN

This study was conducted to investigate whether methionyl-tRNA synthetase (MetRS) is a mediator of methionine (Met)-induced crop milk protein synthesis via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) signalling pathway in breeding pigeons. In Experiment 1, a total of 216 pairs of breeding pigeons were divided into three groups (control, Met-deficient, and Met-rescue groups). In Experiments 2 and 3, forty pairs of breeding pigeons from each experiment were allocated into four groups. The second experiment included a control group and three MetRS inhibitor (REP8839) groups. The third experiment included a Met-deficient group, Met-sufficient group, REP8839 + Met-deficient group and REP8839 + Met-sufficient group. Experiment 1 showed that Met supplementation increased crop development, crop milk protein synthesis, the protein expression of MetRS and JAK2/STAT5 signalling pathway, and improved squab growth. Experiment 2 showed that crop development, crop milk protein synthesis and the protein expression of MetRS and the JAK2/STAT5 signalling pathway were decreased, and squab growth was inhibited by the injection of 1·0 mg/kg body weight REP8839, which was the selected dose for the third experiment. Experiment 3 showed that Met supplementation increased crop development, crop milk protein synthesis and the expression of MetRS and JAK2/STAT5 signalling pathway and rescued squab growth after the injection of REP8839. Moreover, the co-immunoprecipitation results showed that there was an interaction between MetRS and JAK2. Taken together, these findings indicate that MetRS mediates Met-induced crop milk protein synthesis via the JAK2/STAT5 signalling pathway, resulting in improved squab growth in breeding pigeons.

2.
Cell Mol Life Sci ; 79(10): 523, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36121491

RESUMEN

Intestinal stem cells (ISCs) decode and coordinate various types of nutritional information from the diet to support the crypt-villus axis architecture, but how specific dietary molecules affect intestinal epithelial homeostasis remains unclear. In the current study, L-glutamate (Glu) supplementation in either a nitrogen-free diet (NFD) or a corn-soybean meal diet (CSMD) stimulated gut growth and ISC expansion in weaned piglets. Quantitative proteomics screening identified the canonical Wnt signalling pathway as a central regulator of intestinal epithelial development and ISC activity in vivo. Importantly, the Wnt transmembrane receptor Frizzled7 (FZD7) was upregulated in response to dietary Glu patterns, and its perturbations in intestinal organoids (IOs) treated with a specific inhibitor and in FZD7-KO IPEC-J2 cells disrupted the link between Glu inputs and ß-catenin signalling and a subsequent reduction in cell viability. Furthermore, co-localization, coimmunoprecipitation (Co-IP), isothermal titration calorimetry (ITC), and microscale thermophoresis (MST) revealed that Glu served as a signalling molecule directly bound to FZD7. We propose that FZD7-mediated integration of the extracellular Glu signal controls ISC proliferation and differentiation, which provides new insights into the crosstalk of nutrients and ISCs.


Asunto(s)
Ácido Glutámico , beta Catenina , Animales , Proliferación Celular , Ácido Glutámico/metabolismo , Células Madre , Porcinos , Vía de Señalización Wnt , beta Catenina/metabolismo
3.
BMC Ophthalmol ; 23(1): 331, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37474921

RESUMEN

BACKGROUND: To evaluate the effect of room air and sulfur hexafluoride (SF6) gas in idiopathic macular hole(MH)surgery. METHODS: Retrospective, interventional, and comparative study. 238 eyes with the idiopathic macular hole that underwent pars plana vitrectomy, internal limiting membrane peeling, fluid-air exchange, and 20% SF6 (SF6 group:125 eyes) or room air tamponade (air group: 113 eyes) were reviewed. The primary outcome measure was the closure rate of primary surgery. RESULTS: The baseline characteristics of the SF6 group and air group were comparable except for the hole size (479.90 ± 204.48 vs. 429.38 ± 174.63 µm, P = 0.043). The anatomical closure rate was 92.8% (116 / 125) with the SF6 group and 76.1% (86 / 113) with the air group (P < 0.001). A cut-off value of MH size to predict primary anatomical closure was 520 µm, which is based on the lower limit of 95% confidential interval of the MH size among the unclosed patients in the air group. There was no significant difference in anatomical closure rates between SF6 and air group (98.7% vs. 91.9%, P = 0.051) for MH ≤ 520 µm, whereas a significantly lower anatomical closure rate was shown in the air group than SF6 group (46.2% vs. 84.0%, P < 0.001) for MH > 520 µm. CONCLUSION: SF6 exhibited more effectiveness than air to achieve a good anatomical outcome for its longer tamponade when MH > 520 µm.


Asunto(s)
Perforaciones de la Retina , Humanos , Perforaciones de la Retina/cirugía , Estudios Retrospectivos , Hexafluoruro de Azufre , Vitrectomía , Agudeza Visual
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(8): 1213-1221, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37475547

RESUMEN

Roof plate-specific spondin 1 (R-spondin1, RSPO1) is a Wnt/ß-catenin signaling pathway activator that binds with Wnt ligands to stimulate the Wnt/ß-catenin signaling pathway, which is key to hair regeneration. However, it is not clear whether recombinant RSPO1 (rRSPO1) affects hair regeneration. Here, we treat C57BL/6 male mice with rRSPO1 and investigate the expression of the Wnt/ß-catenin signaling pathway and the activation of hair follicle stem cells in the dorsal skin. The mouse skin color score and hair-covered area are determined to describe hair growth, and the skin samples are subjected to H&E staining, western blot analysis and immunofluorescence staining to evaluate hair follicle development and the expressions of Wnt/ß-catenin signaling pathway-related proteins. We find that rRSPO1 activates mouse hair follicle stem cells (mHFSCs) and accelerates hair regeneration. rRSPO1 increases the hair-covered area, the number of hair follicles, and the hair follicle diameter and length. Moreover, rRSPO1 enhances the activity of Wnt/ß-catenin signaling pathway-related proteins and the expressions of HFSC markers, as well as mHFSC viability. These results indicate that subcutaneous injection of rRSPO1 can improve hair follicle development by activating the Wnt/ß-catenin signaling pathway, thereby promoting hair regeneration. This study demonstrates that rRSPO1 has the potential to treat hair loss by activating the Wnt/ß-catenin signaling pathway.


Asunto(s)
Cabello , Vía de Señalización Wnt , Ratones , Masculino , Animales , Ratones Endogámicos C57BL , Cabello/metabolismo , Folículo Piloso/metabolismo , Piel/metabolismo , beta Catenina/metabolismo
5.
J Sci Food Agric ; 103(9): 4649-4659, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36930725

RESUMEN

BACKGROUND: Probiotics comprise effective feed additives that can replace antibiotics in animal livestock production. However, mono-strain probiotics appear less effective because of their instability. Therefore, the present study aimed to investigate dietary supplementation with compound probiotics (CPP) on growth performance, diarrhea rate and intestinal mucosal barrier, as well as the possible molecular mechanism, in chicks. In total, 360 1-day-old chicks of the Hy-Line Brown Chicks were randomly divided into the control group (CON, basal diet), chlortetracycline group (500 mg kg-1 CTC) and compound probiotics group (1000 mg kg-1 CPP, consisting of Bacillus subtilis, Bacillus licheniformis, Enterococcus faecium and yeast). The experiment period was 56 days. RESULTS: The results showed that, in comparison with the CON group, CPP significantly increased the average daily feed intake and average daily gain of chicks and reduced diarrhea (P < 0.05). The probiotic group exhibited increased immune organ (i.e. spleen and thymus) mass and increased levels of serum immunoglobulin (Ig)A, IgM and IgG (P < 0.05) compared to the CTC group. In addition, the jejunal mass and morphology were improved in the probiotic group (P < 0.05). Moreover, CPP reinforced jejunal barrier function, as indicated by increased transepithelial electrical resistance, protein expression of occludin and claudin-1, and diamine oxidase levels in the jejunum (P < 0.05). Likewise, enhanced fluorescence signals of proliferating cell nuclear antigen-labeled mitotic cells and villin-labeled absorptive cells in the jejunum (P < 0.05) suggested that CPP promoted intestinal stem cells activity. Mechanistically, the Wnt/ß-catenin signaling pathway, including ß-catenin, TCF4, c-Myc, cyclin D1 and Lgr5, was amplified in the jejunum by CPP addition (P < 0.05). CONCLUSION: The present study demonstrated that dietary supplementation with CPP reinforced the jejunal epithelial integrity by activating Wnt/ß-catenin signaling and enhanced immune function in chicks. © 2023 Society of Chemical Industry.


Asunto(s)
Probióticos , beta Catenina , Animales , beta Catenina/genética , Vía de Señalización Wnt , Dieta/veterinaria , Diarrea/prevención & control , Diarrea/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Pollos
6.
Stem Cells ; 39(4): 482-496, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33373490

RESUMEN

Enterotoxigenic Escherichia coli causes severe infectious diarrhea with high morbidity and mortality in newborn and weanling pigs mainly through the production of heat-stable enterotoxins (STs). However, the precise regulatory mechanisms involved in ST-induced intestinal epithelium injury remain unclear. Consequently, we conducted the experiments in vivo (mice), ex vivo (mouse and porcine enteroids), and in vitro (MODE-K and IPEC-J2 cells) to explore the effect of STp (one type of STa) on the integrity of the intestinal epithelium. The results showed that acute STp exposure led to small intestinal edema, disrupted intestinal integrity, induced crypt cell expansion into spheroids, and downregulated Wnt/ß-catenin activity in the mice. Following a similar trend, the enteroid-budding efficiency and the expression of Active ß-catenin, ß-catenin, Lgr5, PCNA, and KRT20 were significantly decreased after STp treatment, as determined ex vivo. In addition, STp inhibited cell proliferation, induced cell apoptosis, destroyed cell barriers, and reduced Wnt/ß-catenin activity by downregulating its membrane receptor Frizzled7 (FZD7). In contrast, Wnt/ß-catenin reactivation protected the IPEC-J2 cells from STp-induced injury. Taking these findings together, we conclude that STp inhibits intestinal stem cell expansion to disrupt the integrity of the intestinal mucosa through the downregulation of the Wnt/ß-catenin signaling pathway.


Asunto(s)
Toxinas Bacterianas/toxicidad , Edema/genética , Enterotoxinas/toxicidad , Proteínas de Escherichia coli/toxicidad , Receptores Frizzled/genética , Mucosa Intestinal/efectos de los fármacos , Organoides/efectos de los fármacos , Células Madre/efectos de los fármacos , beta Catenina/genética , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Edema/inducido químicamente , Edema/metabolismo , Edema/patología , Escherichia coli Enterotoxigénica/química , Escherichia coli Enterotoxigénica/patogenicidad , Receptores Frizzled/metabolismo , Regulación de la Expresión Génica , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Queratina-20/genética , Queratina-20/metabolismo , Ratones , Organoides/citología , Organoides/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Células Madre/citología , Células Madre/metabolismo , Porcinos , beta Catenina/metabolismo
7.
Sensors (Basel) ; 21(6)2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33801009

RESUMEN

Direction of arrival (DOA) estimation has always been a hot topic for researchers. The complex and changeable environment makes it very challenging to estimate the DOA in a small snapshot and strong noise environment. The direction-of-arrival estimation method based on compressed sensing (CS) is a new method proposed in recent years. It has received widespread attention because it can realize the direction-of-arrival estimation under small snapshots. However, this method will cause serious distortion in a strong noise environment. To solve this problem, this paper proposes a DOA estimation algorithm based on the principle of CS and density-based spatial clustering (DBSCAN). First of all, in order to make the estimation accuracy higher, this paper selects a signal reconstruction strategy based on the basis pursuit de-noising (BPDN). In response to the challenge of the selection of regularization parameters in this strategy, the power spectrum entropy is proposed to characterize the noise intensity of the signal, so as to provide reasonable suggestions for the selection of regularization parameters; Then, this paper finds out that the DOA estimation based on the principle of CS will get a denser estimation near the real angle under the condition of small snapshots through analysis, so it is proposed to use a DBSCAN method to process the above data to obtain the final DOA estimate; Finally, calculate the cluster center value of each cluster, the number of clusters is the number of signal sources, and the cluster center value is the final DOA estimate. The proposed method is applied to the simulation experiment and the micro electro mechanical system (MEMS) vector hydrophone lake test experiment, and they are proved that the proposed method can obtain good results of DOA estimation under the conditions of small snapshots and low signal-to-noise ratio (SNR).

8.
J Cell Physiol ; 235(7-8): 5613-5627, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31960439

RESUMEN

Heat stress induced by continuous high ambient temperatures or strenuous exercise in humans and animals leads to intestinal epithelial damage through the induction of intracellular stress response. However, the precise mechanisms involved in the regulation of intestinal epithelial cell injury, especially intestinal stem cells (ISCs), remain unclear. Thereby, in vitro a confluent monolayer of IPEC-J2 cells was exposed to the high temperatures (39, 40, and 41°C), the IPEC-J2 cell proliferation, apoptosis, differentiation, and barrier were determined, as well as the expression of GRP78, which is a marker protein of endoplasmic reticulum stress (ERS). The Wnt/ß-catenin pathway-mediated regenerative response was validated using R-spondin 1 (Rspo1). And ex-vivo, three-dimensional cultured enteroids were developed from piglet jejunal crypt and employed to assess the ISC activity under heat exposure. The results showed that exposure to 41°C for 72 hr, rather than 39°C and 40°C, decreased IPEC-J2 cell viability, inhibited cell proliferation and differentiation, induced ERS and cell apoptosis, damaged barrier function and restricted the Wnt/ß-catenin pathway. Nevertheless, Wnt/ß-catenin reactivation via Rspo1 protects the intestinal epithelium from heat exposure-induced injury. Furthermore, exposure to 41°C for 24 hr reduced ISC activity, stimulated crypt-cell apoptosis, upregulated the expression of GRP78 and caspase-3, and downregulated the expression of ß-catenin, Lgr5, Bmi1, Ki67, KRT20, ZO-1, occludin, and claudin-1. Taken together, we conclude that heat exposure induces ERS and downregulates the Wnt/ß-catenin signaling pathway to disrupt epithelial integrity by inhibiting the intestinal epithelial cell proliferation and stem cell expansion.


Asunto(s)
Proliferación Celular/genética , Estrés del Retículo Endoplásmico/genética , Retículo Endoplásmico/genética , Mucosa Intestinal/metabolismo , Animales , Apoptosis/genética , Caspasa 3/genética , Ciclo Celular/genética , Diferenciación Celular/genética , Chaperón BiP del Retículo Endoplásmico , Células Epiteliales/metabolismo , Calor/efectos adversos , Humanos , Mucosa Intestinal/crecimiento & desarrollo , Complejo Represivo Polycomb 1/genética , Células Madre/metabolismo , Porcinos/genética , Vía de Señalización Wnt/genética , beta Catenina/genética
9.
J Sci Food Agric ; 100(3): 1311-1319, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31742693

RESUMEN

BACKGROUND: Intramuscular fat (IMF) and polyunsaturated fatty acids (PUFAs) have been thought to play a crucial role in improving meat quality. Considering the ability of pioglitazone hydrochloride (PGZ) to deposit fat, and the anti-stress capability of chromium methionine (CrMet), we combined these compounds to produce higher quality meat in poultry. A total of 3000 female chickens were divided into four groups (five replicates, each with 150 chickens): control, control plus15 mg·kg-1 PGZ, control plus 200 µg·kg-1 CrMet, and control plus15 mg·kg-1 PGZ plus 200 µg·kg-1 CrMet. The experiment lasted for 28 days. RESULTS: Compared to the control group and the PGZ group, the average daily gain (ADG) was significantly increased in the PGZ plus CrMet group, whereas the feed-to-gain ratio (F/G) was decreased from 0 to 14 days. Meanwhile, the redness value of breast muscle and IMF of thigh muscle increased in the PGZ plus CrMet group compared with the control group and these detections in the PGZ plus CrMet group exhibited highest value among the four groups. The cooking loss decreased in the breast muscle and thigh muscle after PGZ combined with CrMet in diets. The percentages of C16:1, C18:2n-6 and PUFAs increased in the PGZ plus CrMet group. The mRNA abundance of peroxisome proliferator activated receptor (PPAR) γ, PPAR coactivator 1 α, and fatty acid binding protein 3 was significantly enhanced with PGZ plus CrMet supplementation. CONCLUSION: Collectively, dietary supplementation with PGZ plus CrMet improved growth performance and meat quality by decreasing the cooking loss and increasing the IMF and PUFA levels. © 2019 Society of Chemical Industry.


Asunto(s)
Pollos/metabolismo , Cromo/metabolismo , Suplementos Dietéticos/análisis , Ácidos Grasos/metabolismo , Metionina/metabolismo , Músculo Esquelético/metabolismo , Pioglitazona/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos/genética , Cromo/administración & dosificación , Culinaria , Dieta/veterinaria , Ácidos Grasos/química , Femenino , Metabolismo de los Lípidos , Carne/análisis , Metionina/administración & dosificación , Músculo Esquelético/química , Pioglitazona/administración & dosificación
10.
J Sci Food Agric ; 100(2): 665-671, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31583700

RESUMEN

BACKGROUND: Muscle fat content and fatty acid composition play an important role in poultry flavor and taste. To investigate the effects of pioglitazone hydrochloride (PGZ) on growth performance and thigh muscle quality in yellow-feathered chickens, 360 female chickens were randomly divided into three groups and treated with three doses of PGZ (0, 7.5, and 15 mg kg-1 ) for 28 days. Each group had six replicates of 20 chickens. RESULTS: The results showed that dietary supplementation with 15 mg kg-1 PGZ increased average daily feed intake (ADFI) and the average daily gain (ADG) from 0 to 14 days. Furthermore, the triglyceride (TG) level was decreased by 15 mg kg-1 PGZ, whereas the eviscerated yield was increased. The relative weight of the heart and kidneys showed a linear increase with dietary PGZ supplementation, and the drip loss of the thigh muscle was significantly decreased by 15 mg kg-1 PGZ supplementation. Moreover, a* value, intramuscular fat (IMF), and polyunsaturated fatty acids (PUFAs) showed a linear increase, and pH24 h and drip loss showed a quadratic influence with the levels of PGZ supplementation. In particular, the PUFA proportion was increased by 7.63% and 9.14% in the 7.5 mg kg-1 PGZ and 15 mg kg-1 PGZ groups, respectively. Additionally, 15 mg kg-1 of PGZ increased the total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX ) activity. CONCLUSION: In summary, 15 mg kg-1 PGZ has substantial effects on growth performance and meat quality, particularly by decreasing drip loss and increasing IMF content, PUFA proportions, and antioxidant ability. © 2019 Society of Chemical Industry.


Asunto(s)
Antioxidantes/metabolismo , Pollos/metabolismo , Ácidos Grasos/química , Músculo Esquelético/metabolismo , Pioglitazona/administración & dosificación , Muslo/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Pollos/crecimiento & desarrollo , Suplementos Dietéticos/análisis , Ácidos Grasos/metabolismo , Femenino , Glutatión Peroxidasa/metabolismo , Carne/análisis , Músculo Esquelético/química , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/crecimiento & desarrollo
11.
J Cell Physiol ; 234(10): 19028-19038, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30937902

RESUMEN

The crypt-villus axis of the intestine undergoes a continuous renewal process that is driven by intestinal stem cells (ISCs). However, the homeostasis is disturbed under constant exposure to high ambient temperatures, and the precise mechanism is unclear. We found that both EdU+ and Ki67+ cell ratios were significantly reduced after exposure to 41°C, as well as the protein synthesis rate of IPEC-J2 cells, and the expression of ubiquitin and heat shock protein 60, 70, and 90 were significantly increased. Additionally, heat exposure decreased enteroid expansion and budding efficiency, as well as induced apoptosis after 48 hr; however, no significant difference was observed in the apoptosis ratio after 24 hr. In the process of heat exposure, the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway was significantly inhibited in both IPEC-J2 cells and enteroids. Correspondingly, treatment of IPEC-J2 and enteroids with the mTORC1 agonist MHY1485 at 41°C significantly attenuated the inhibition of proliferation and protein synthesis, increased the ISC activity, and promoted expansion and budding of enteroid. In summary, we conclude that the mTORC1 signaling pathway regulates intestinal epithelial cell and stem cell activity during heat exposure-induced injury.


Asunto(s)
Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Mucosa Intestinal/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Células Madre/metabolismo , Animales , Apoptosis/fisiología , Línea Celular , Chaperonina 60/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Calor/efectos adversos , Mucosa Intestinal/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/agonistas , Transducción de Señal/fisiología , Porcinos , Ubiquitina/metabolismo
12.
Sensors (Basel) ; 19(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652974

RESUMEN

Underwater acoustic technology is an important means of detecting the ocean. Due to the complex influence of the marine environment, there is a lot of noise and baseline drift in the signals collected by hydrophones. In order to solve this problem, this paper proposes a denoising and baseline drift removal algorithm for MEMS vector hydrophone based on whale-optimized variational mode decomposition (VMD) and correlation coefficient (CC). Firstly, the power spectrum entropy (PSE), which reflects the variation characteristics of the signal frequency is selected as the fitness function of the whale-optimization algorithm to find the parameters (K,α) of the VMD. It is easier to find the global optimal solution of the parameters by combining the whale-optimization algorithm. Then, using the VMD algorithm after obtaining the parameters, the original signal is decomposed to obtain the intrinsic mode functions (IMFs), and calculating the correlation coefficients (CCs) between the IMFs and the original signal. Finally, the CC threshold is used to remove the noise IMFs, and the rest of the useful IMFs are reconstructed to complete the denoising and baseline drift removal process of the original signals. In the simulation experiments, the algorithm proposed in this paper shows better performance by comparing conventional digital signal-processing methods and the related algorithms proposed recently. Applied in the experiments of a MEMS hydrophone, the effectiveness of the proposed algorithm is also verified. This algorithm can provide new ideas for signal denoising and baseline drift removal.

13.
Int J Mol Sci ; 19(4)2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29601474

RESUMEN

Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) and B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) are markers of fast-cycling and quiescent intestinal stem cells, respectively. To determine the functions of these proteins in large animals, we investigated their effects on the proliferation of intestinal epithelial cells from pigs. Our results indicated that LGR5 and BMI1 are highly conserved proteins and that the pig proteins have greater homology with the human proteins than do mouse proteins. Overexpression of either LGR5 or BMI1 promoted cell proliferation and WNT/ß-catenin signaling in pig intestinal epithelial cells (IPEC-J2). Moreover, the activation of WNT/ß-catenin signaling by recombinant human WNT3A protein increased cell proliferation and LGR5 and BMI1 protein levels. Conversely, inhibition of WNT/ß-catenin signaling using XAV939 reduced cell proliferation and LGR5 and BMI1 protein levels. This is the first report that LGR5 and BMI1 can increase proliferation of pig intestinal epithelial cells by activating WNT/ß-catenin signaling.


Asunto(s)
Proliferación Celular/fisiología , Complejo Represivo Polycomb 1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Intestinos/citología , Complejo Represivo Polycomb 1/genética , Receptores Acoplados a Proteínas G/genética , Porcinos , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/genética , Proteína Wnt3A/genética , Proteína Wnt3A/metabolismo
14.
Int J Mol Sci ; 18(11)2017 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-29156556

RESUMEN

Caudal type homeobox 2 (CDX2) is expressed in intestinal epithelial cells and plays a role in gut development and homeostasis by regulating cell proliferation. However, whether CDX2 cooperates with the mammalian target of rapamycin complex 1 (mTORC1) and Wnt/ß-catenin signaling pathways to stimulate cell proliferation remains unknown. The objective of this study was to investigate the effect of CDX2 on the proliferation of porcine jejunum epithelial cells (IPEC-J2) and the correlation between CDX2, the mTORC1 and Wnt/ß-catenin signaling pathways. CDX2 overexpression and knockdown cell culture models were established to explore the regulation of CDX2 on both pathways. Pathway-specific antagonists were used to verify the effects. The results showed that CDX2 overexpression increased IPEC-J2 cell proliferation and activated both the mTORC1 and Wnt/ß-catenin pathways, and that CDX2 knockdown decreased cell proliferation and inhibited both pathways. Furthermore, the mTORC1 and Wnt/ß-catenin pathway-specific antagonist rapamycin and XAV939 (3,5,7,8-tetrahydro-2-[4-(trifluoromethyl)]-4H -thiopyrano[4,3-d]pyrimidin-4-one) both suppressed the proliferation of IPEC-J2 cells overexpressing CDX2, and that the combination of rapamycin and XAV939 had an additive effect. Regardless of whether the cells were treated with rapamycin or XAV939 alone or in combination, both mTORC1 and Wnt/ß-catenin pathways were down-regulated, accompanied by a decrease in CDX2 expression. Taken together, our data indicate that CDX2 stimulates porcine intestinal epithelial cell proliferation by activating the mTORC1 and Wnt/ß-catenin signaling pathways.


Asunto(s)
Factor de Transcripción CDX2/genética , Células Epiteliales/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Vía de Señalización Wnt , Animales , Factor de Transcripción CDX2/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Compuestos Heterocíclicos con 3 Anillos/farmacología , Sirolimus/farmacología , Porcinos , Vía de Señalización Wnt/efectos de los fármacos
15.
Immunology ; 146(2): 339-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26211676

RESUMEN

Interleukin-17 (IL-17) is a cytokine with critical functions in multiple autoimmune diseases. However, its roles in type I diabetes and the underlying mechanisms remain to be fully elucidated. In the current study, we investigated the impact of IL-17 deficiency on streptozotocin (STZ) -induced diabetes. Il-17(-/-) mice exhibited attenuated hyperglycaemia and insulitis after STZ treatment compared with control mice. The Il-17(-/-) mice had fewer CD8(+) cells infiltrating the pancreas than wild-type controls after STZ injection. Wild-type mice showed increased percentage and number of splenic CD8(+) cells and decreased Gr1(+)  CD11b(+) myeloid-derived suppressor cells (MDSC) after STZ treatment, but Il-17(-/-) mice maintained the percentages and numbers of splenic CD8(+) cells and MDSC, suggesting that IL-17 is implicated in STZ-induced cellular immune responses in the spleen. We further purified the MDSC from spleens of STZ-treated mice. Il-17(-/-) MDSC showed increased ability to suppress CD8(+) cell proliferation in vitro compared with wild-type MDSC. Transfer of MDSC to diabetic mice showed that MDSC from Il-17(-/-) mice could ameliorate hyperglycaemia. Moreover, recipients with MDSC from Il-17(-/-) mice had a decreased percentage of CD8(+) cell in the spleen compared with recipients with MDSC from wild-type mice. These data suggest that IL-17 is required in splenic MDSC function after STZ delivery. In summary, our study has revealed a pathogenic role of IL-17 in an STZ-induced diabetes model with important implications for our understanding of IL-17 function in autoimmune diseases.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diabetes Mellitus Experimental/prevención & control , Interleucina-17/deficiencia , Células Mieloides/inmunología , Páncreas/inmunología , Bazo/inmunología , Traslado Adoptivo , Animales , Biomarcadores/sangre , Glucemia/metabolismo , Antígeno CD11b/inmunología , Antígeno CD11b/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Células Cultivadas , Quimiotaxis de Leucocito , Técnicas de Cocultivo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Insulina/sangre , Interleucina-17/genética , Activación de Linfocitos , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Células Mieloides/trasplante , Páncreas/metabolismo , Páncreas/patología , Receptores de Quimiocina/inmunología , Receptores de Quimiocina/metabolismo , Bazo/metabolismo , Factores de Tiempo
16.
J Cell Biochem ; 116(11): 2637-48, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25923195

RESUMEN

The objective of this study was to investigate the effect of insulin growth factor-I (IGF-I) on the size of pig skeletal muscle satellite cells (SCs). Using microarray, real-time RT-PCR, radioimmunoassay analysis and western blot, we first showed that supplementation of low-dose of IGF-I in culture medium resulted in enlarged cell size of Lantang SCs, only Akt and S6K were up-regulated at both the mRNA and protein levels among almost all of the mTOR pathway key genes, but had no effect on cell number. To elucidate the signaling mechanisms responsible for regulating cell size under low-dose of IGF-I treatment, we blocked Akt and S6K activity with the specific inhibitors MK2206 and PF4708671, respectively. Both inhibitors caused a decrease in cell size. In addition, MK2206 lowered the protein level of p-Akt (Ser473), p-S6K (Thr389), and p-rpS6 (Ser235/236), whereas PF4708671 lowered the protein level of p-S6K (Thr389) and p-rpS6 (Ser235/236). However, low dose of IGF-I didn't affect the protein level of p-mTOR (Ser2448) and p-mTOR (Ser2481). When both inhibitors were applied simultaneously, the effect was the same as that of the Akt inhibition alone. Taken together, we report for the first time that low-dose of IGF-I treatment increases cell size via Akt/S6K signaling pathway.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Células Satélite del Músculo Esquelético/citología , Animales , Tamaño de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Imidazoles/farmacología , Fosforilación , Piperazinas/farmacología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Porcinos
17.
Arch Virol ; 160(4): 1015-20, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25663217

RESUMEN

Porcine parvovirus (PPV) causes reproductive failure in pigs, which leads to economic losses to the industry. As reported previously, LiCl efficiently impairs the replication of a variety of viruses, including the coronavirus infectious bronchitis virus (IBV), transmissible gastroenteritis virus (TGEV), and pseudorabies herpesvirus. We demonstrate for the first time that inhibition of PPV replication in swine testis (ST) cells by LiCl is dose-dependent, and that the antiviral effect of LiCl occurred in the early phase of PPV replication. These results indicate that LiCl might be an effective anti-PPV drug to control PPV disease. Further studies are required to explore the mechanism of the antiviral effect of LiCl on PPV infection in vivo.


Asunto(s)
Antivirales/farmacología , Cloruro de Litio/farmacología , Infecciones por Parvoviridae/veterinaria , Parvovirus Porcino/efectos de los fármacos , Enfermedades de los Porcinos/virología , Animales , Línea Celular , Infecciones por Parvoviridae/virología , Parvovirus Porcino/genética , Parvovirus Porcino/fisiología , Porcinos , Acoplamiento Viral/efectos de los fármacos , Replicación Viral/efectos de los fármacos
18.
Cell Immunol ; 287(2): 74-7, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24423465

RESUMEN

Interleukin IL-17F was expressed in colon epithelial cells and showed multiple functions in colon tumorigenesis. However, the role of IL-17F in colon cancer cell cycle progression remains unclear. In this study, we analyzed the effects of IL-17F on oxidant-induced cell cycle shift in human colon cancer cells. IL-17F overexpressing and wildtype HCT116 cells were challenged with H(2)O(2). Cell cycle distribution analysis showed IL-17F attenuated H(2)O(2)-induced G2/M phase arrest by inhibiting S to G2/M transition. We further checked expression levels of two critical cell cycle regulators p21 and p27. The results showed that IL-17F could inhibit H(2)O(2) induced p27 up-regulation. Meanwhile, IL-17F could increase the phosphorylation of p38 after H(2)O(2) treatment. The regulations of p27 level and p38 activity may contribute to the impaired G2/M phase arrest by IL-17F. Taken together, our findings extend IL-17F as an important factor in colon cancer development and provide new insight into the signaling pathway.


Asunto(s)
Colon/inmunología , Neoplasias Colorrectales/inmunología , Células Epiteliales/inmunología , Peróxido de Hidrógeno/metabolismo , Interleucina-17/metabolismo , Carcinogénesis , Puntos de Control del Ciclo Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica , Células HCT116 , Humanos , Interleucina-17/genética , Interleucina-17/inmunología , Fosforilación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Transgenes/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
19.
Cells ; 13(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38607088

RESUMEN

Muscle regeneration, representing an essential homeostatic process, relies mainly on the myogenic progress of resident satellite cells, and it is modulated by multiple physical and nutritional factors. Here, we investigated how myogenic differentiation-related factors and pathways respond to the first limiting amino acid lysine (Lys) in the fast and slow muscles, and their satellite cells (SCs), of swine. Thirty 28-day-old weaned piglets with similar body weights were subjected to three diet regimens: control group (d 0-28: 1.31% Lys, n = 12), Lys-deficient group (d 0-28: 0.83% Lys, n = 12), and Lys rescue group (d 0-14: 0.83% Lys; d 15-28: 1.31% Lys, n = 6). Pigs on d 15 and 29 were selectively slaughtered for muscular parameters evaluation. Satellite cells isolated from fast (semimembranosus) and slow (semitendinosus) muscles were also selected to investigate differentiation ability variations. We found Lys deficiency significantly hindered muscle development in both fast and slow muscles via the distinct manipulation of myogenic regulatory factors and the Wnt/Ca2+ pathway. In the SC model, Lys deficiency suppressed the Wnt/Ca2+ pathways and myosin heavy chain, myogenin, and myogenic regulatory factor 4 in slow muscle SCs but stimulated them in fast muscle SCs. When sufficient Lys was attained, the fast muscle-derived SCs Wnt/Ca2+ pathway (protein kinase C, calcineurin, calcium/calmodulin-dependent protein kinase II, and nuclear factor of activated T cells 1) was repressed, while the Wnt/Ca2+ pathway of its counterpart was stimulated to further the myogenic differentiation. Lys potentially manipulates the differentiation of porcine slow and fast muscle myofibers via the Wnt/Ca2+ pathway in opposite trends.


Asunto(s)
Lisina , Factores Reguladores Miogénicos , Animales , Porcinos , Factores Reguladores Miogénicos/metabolismo , Lisina/metabolismo , Músculo Esquelético/metabolismo , Diferenciación Celular , Cadenas Pesadas de Miosina/metabolismo
20.
World J Clin Cases ; 12(1): 163-168, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38292635

RESUMEN

BACKGROUND: Endophthalmitis occurring in silicone oil-filled eyes is a very rare occurrence, with reported incidence rates ranging between 0.07% and 0.039%. Traditional methods of management of infectious endophthalmitis include the removal of silicone oil, washout of the vitreous cavity, administration of intravitreal antibiotics, and re-injection of silicone oil. CASE SUMMARY: Herein, we report the case of a 39-year-old man with unilateral endophthalmitis after pars plana vitrectomy and silicone oil tamponade. Intravitreal injections of full-dose antibiotics and anterior chamber washout were used to treat the patient. No signs of retinal toxicity were observed during the follow-up period. CONCLUSION: Intravitreal full-dose antibiotic injections and anterior chamber washout are promising alternatives to traditional therapies for endophthalmitis in silicone oil-filled eyes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA