Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982306

RESUMEN

Developmental engineering (DE) aims to culture mammalian cells on corresponding modular scaffolds (scale: micron to millimeter), then assemble these into functional tissues imitating natural developmental biology processes. This research intended to investigate the influences of polymeric particles on modular tissue cultures. When poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA) and polystyrene (PS) particles (diameter: 5-100 µm) were fabricated and submerged in culture medium in tissue culture plastics (TCPs) for modular tissue cultures, the majority of adjacent PMMA, some PLA but no PS particles aggregated. Human dermal fibroblasts (HDFs) could be directly seeded onto large (diameter: 30-100 µm) PMMA particles, but not small (diameter: 5-20 µm) PMMA, nor all the PLA and PS particles. During tissue cultures, HDFs migrated from the TCPs surfaces onto all the particles, while the clustered PMMA or PLA particles were colonized by HDFs into modular tissues with varying sizes. Further comparisons revealed that HDFs utilized the same cell bridging and stacking strategies to colonize single or clustered polymeric particles, and the finely controlled open pores, corners and gaps on 3D-printed PLA discs. These observed cell-scaffold interactions, which were then used to evaluate the adaptation of microcarrier-based cell expansion technologies for modular tissue manufacturing in DE.


Asunto(s)
Polímeros , Polimetil Metacrilato , Humanos , Técnicas de Cultivo de Célula , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido
2.
Ann Hepatol ; 27(3): 100681, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35124283

RESUMEN

INTRODUCTION AND OBJECTIVE: Liver fibrosis (LF) often leads to cirrhosis and even hepatocellular carcinoma (HCC), but the molecular mechanism remains unclear. The aims of the present study were to identify potential biomarkers for the progression of LF to HCC and explore the associated molecular mechanisms. MATERIALS AND METHODS: The isobaric tags for relative and absolute quantitation (iTRAQ) was used to detect changes in the protein expression profiles of liver tissues and to screen the differentially expressed proteins (DEPs). The differentially expressed genes (DEGs) of LF rats and patients were screened by Gene Expression Database (GEO). Subsequently, the clinicopathological analysis of the overlapping genes in different pathological stages in HCC patients based on GEPIA database was conducted. RESULTS: iTRAQ proteomic analysis revealed 689, 749 and 585 DEPs in the 6W, 8W and 12W groups, respectively. ALDH2, SLC27A5 and ASNS were not only the DEPs found in rats with LF with different stages but were also the DEGs related to the pathological stages and survival in patients with HCC. CONCLUSIONS: ALDH2, SLC27A5 and ASNS were the potential biomarkers associated with the progression of LF to HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Aldehído Deshidrogenasa Mitocondrial , Animales , Biomarcadores , Carcinoma Hepatocelular/patología , Humanos , Cirrosis Hepática/genética , Neoplasias Hepáticas/patología , Proteómica , Ratas
3.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362450

RESUMEN

Rice is an important food crop all over the world. It can be infected by the rice blast fungus Magnaporthe oryzae, which results in a significant reduction in rice yield. The infection mechanism of M. oryzae has been an academic focus for a long time. It has been found that G protein, AMPK, cAMP-PKA, and MPS1-MAPK pathways play different roles in the infection process. Recently, the function of TOR signaling in regulating cell growth and autophagy by receiving nutritional signals generated by plant pathogenic fungi has been demonstrated, but its regulatory mechanism in response to the nutritional signals remains unclear. In this study, a yeast amino acid permease homologue MoGap1 was identified and a knockout mutant of MoGap1 was successfully obtained. Through a phenotypic analysis, a stress analysis, autophagy flux detection, and a TOR activity analysis, we found that the deletion of MoGap1 led to a sporulation reduction as well as increased sensitivity to cell wall stress and carbon source stress in M. oryzae. The ΔMogap1 mutant showed high sensitivity to the TOR inhibitor rapamycin. A Western blot analysis further confirmed that the TOR activity significantly decreased, which improved the level of autophagy. The results suggested that MoGap1, as an upstream regulator of TOR signaling, regulated autophagy and responded to adversities such as cell wall stress by regulating the TOR activity.


Asunto(s)
Magnaporthe , Oryza , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/metabolismo , Autofagia/genética , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
4.
Pharm Biol ; 60(1): 1264-1277, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35787093

RESUMEN

CONTEXT: The litchi semen are traditional medications for treating liver fibrosis (LF) in China. The mechanism remains unclear. OBJECTIVE: This study investigates the anti-liver fibrotic mechanism of the total flavonoids of litchi semen (TFL). MATERIALS AND METHODS: Sprague-Dawley rats with carbon tetrachloride-induced LF were treated with TFL (50 and 100 mg/kg) for 4 weeks. The anti-liver fibrotic effects of TFL were evaluated and the underlying mechanisms were investigated via histopathological analysis, proteomic analysis and molecular biology technology. RESULTS: Significant anti-LF effects were observed in the high-TFL-dose group (TFL-H, p < 0.05). Five hundred and eighty-five and 95 differentially expressed proteins (DEPs) were identified in the LF rat model (M group) and TFL-H group, respectively. The DEPs were significantly enriched in the retinol metabolism pathway (p < 0.0001). The content of 9-cis-retinoic acid (0.93 ± 0.13 vs. 0.66 ± 0.10, p < 0.05, vs. the M group) increased significantly in the TFL-H group. The upregulation of RXRα (0.50 ± 0.05 vs. 0.27 ± 0.13 protein, p < 0.05), ALDH2 (1.24 ± 0.09 vs. 1.04 ± 0.08 protein, p < 0.05), MMP3 (0.89 ± 0.02 vs. 0.61 ± 0.12 protein, p < 0.05), Aldh1a7 (0.20 ± 0.03 vs. 0.03 ± 0.00 mRNA, p < 0.05) and Aox3 (0.72 ± 0.14 vs. 0.05 ± 0.01 mRNA, p < 0.05) after TFL treatment was verified. CONCLUSIONS: TFL exhibited good anti-liver fibrotic effects, which may be related to the upregulation of the retinol metabolism pathway. TFL may be promising anti-LF agents with potential clinical application prospects.


Asunto(s)
Flavonoides , Litchi , Cirrosis Hepática , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Litchi/química , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Proteómica , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Semillas/química , Regulación hacia Arriba , Vitamina A/efectos adversos
5.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5722-5731, 2020 Dec.
Artículo en Zh | MEDLINE | ID: mdl-33496112

RESUMEN

This paper was to investigate the effect of total flavonoids of Lichi Semen(TFL) on carbon tetrachloride(CCl_4)-induced liver fibrosis in rats, analyze and predict its mechanism of action and potential quality markers(Q-marker). Firstly, male SD rats were taken and injected subcutaneously with a 40% CCl_4-vegetable oil solution twice a week for 8 consecutive weeks to establish a rat model of liver fibrosis. The rats with liver fibrosis were randomly divided into model group, silybin group(43.19 mg·kg~(-1)), Fuzheng Huayu Capsules group(462.75 mg·kg~(-1)), and TFL groups(100 mg·kg~(-1) and 25 mg·kg~(-1)), with normal rats as a blank group, 10 rats in each group. Except for the blank group, the rats in the other groups were subcutaneously injected with 40% CCl_4-vegetable oil solution of a maintenance dose, once a week. The rats in various treatment groups received corresponding doses of drugs, while the rats in the blank group and model group received the same volume of normal saline once a day for 4 weeks. At the end of the experiment, blood was collected from the abdominal aorta and the liver tissues were collected. The levels of total bilirubin(TBiL), direct bilirubin(DBiL), indirect bilirubin(IBiL), alanine aminotransferase(ALT), and aspartate aminotransferase(AST) in serum were detected by using an automatic biochemical detector. Masson staining was used to observe the histopathological changes of rat liver. Then, the chemical compositions of TFL were collected, and the action targets of these chemical compositions were predicted through SWISS database and reverse molecular docking server(DRAR-CPI). After screening of disease targets of liver fibrosis by Gene Cards database, the protein-protein interaction was analyzed with use of STRING database, and GO(gene ontology) analysis and KEGG(Kyoto encyclopedia of genes and genomes) enrich analysis were also carried out. Moreover, an iTRAQ proteomics technology was used to determine protein expression in liver tissues of rats in TFL, model and blank groups to verify the targets. Furthermore, Cytoscape software was used to establish and visualize the network of chemical components, targets and pathways, and predict the potential Q-marker of TFL. The results showed that the levels of TBiL, DBiL, IBiL, ALT, and AST in the model group were significantly higher than those in the blank normal group(P<0.05), and the above levels in the treatment groups were lower than those in the model group, but with no significant differences. Masson staining showed that the liver damage and the degree of fibrosis were severe in the model group, and were relieved to different degrees in the treatment groups. Then, 74 chemical components were screened, which could act on 865 targets such as EGFR and SRC, participating in the regulation of cancer pathways, PI3 K-Akt signaling pathway, HIF-1 signaling pathway and other signaling pathways closely related to liver fibrosis. Pinocembrin, quercetin, epicatechin, procyanidin A2, naringenin, nobiletin, phlorizin and rutin showed the highest correlation with liver fibrosis-related targets and pathways. Proteomics results showed that a total of 18 proteins among the 45 proteins predicted by internet pharmacology were identified, among which 6 proteins were significantly expressed, including 5 up-regulated proteins and 1 down-regulated protein. The protein expression of ALB, PLG, HSP90 AA1, EGFR and MAP2 K1 was significantly returned to a normal state in the TFL treatment groups. In conclusion, TFL may demonstrate the anti-hepatic fibrosis and potential hepatoprotective effects by regulating the expression of ALB, PLG, HSP90 AA1, EGFR and MAP2 K1, which may be associated with the regulation of multiple signaling pathways related to liver fibrosis such as PI3 K-Akt pathway. Pinocembrin, quercetin, epicatechin, procyanidin A2, naringenin, nobiletin, phlorizin and rutin could be regarded as potential Q-markers of TFL for quality control.


Asunto(s)
Flavonoides , Semen , Animales , Tetracloruro de Carbono , Hígado/patología , Cirrosis Hepática , Masculino , Simulación del Acoplamiento Molecular , Ratas , Ratas Sprague-Dawley
6.
J Biotechnol ; 382: 78-87, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38307299

RESUMEN

This study aimed to integrate experimental and computational methods to systematically investigate cell infiltration and colonization within porous scaffolds. Poly(lactic acid) discs (Diameter: 6 mm; Thickness: 500 µm) with open pores (Diameter: 400-1100 µm), corners (Angle: 30-120°) and gaps (Distance: 100-500 µm), and cellulosic scaffolds with irregular pores (Diameter: 50-300 µm) were situated in tissue culture plates and cultured with human dermal fibroblasts (HDFs). Both phase contrast and scanning electron microscopy revealed that HDFs initially proliferated on scaffold surfaces, then infiltrated into the porous structures via cell bridging and stacking strategies, which was affected by the initial cell seeding densities, porous structures and culture times. Based on the density-dependent cell growths in two-dimensional cell cultures, power law models were developed to quantitatively simulate cell growths on scaffold surfaces. Model analysis predicted the effect of cell seeding efficiency on cell infiltrations into the porous scaffolds, which was further validated via series cell seeding experiments. The novelty of this research lies in the incorporation of multiple experimental and computational strategies, which enables the mechanistic insights of cell invasion and colonization in porous scaffolds, also facilitates the development of suitable bioprocesses for cell seeding and tissue manufacturing in Tissue Engineering and Regenerative Medicine.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Andamios del Tejido/química , Porosidad , Ingeniería de Tejidos/métodos , Técnicas de Cultivo de Célula/métodos , Piel
7.
Autophagy ; 19(8): 2353-2371, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36803211

RESUMEN

Macroautophagy/autophagy is an evolutionarily conserved biological process among eukaryotes that degrades unwanted materials such as protein aggregates, damaged mitochondria and even viruses to maintain cell survival. Our previous studies have demonstrated that MoVast1 acts as an autophagy regulator regulating autophagy, membrane tension, and sterol homeostasis in rice blast fungus. However, the detailed regulatory relationships between autophagy and VASt domain proteins remain unsolved. Here, we identified another VASt domain-containing protein, MoVast2, and further uncovered the regulatory mechanism of MoVast2 in M. oryzae. MoVast2 interacted with MoVast1 and MoAtg8, and colocalized at the PAS and deletion of MoVAST2 results in inappropriate autophagy progress. Through TOR activity analysis, sterols and sphingolipid content detection, we found high sterol accumulation in the ΔMovast2 mutant, whereas this mutant showed low sphingolipids and low activity of both TORC1 and TORC2. In addition, MoVast2 colocalized with MoVast1. The localization of MoVast2 in the MoVAST1 deletion mutant was normal; however, deletion of MoVAST2 leads to mislocalization of MoVast1. Notably, the wide-target lipidomic analyses revealed significant changes in sterols and sphingolipids, the major PM components, in the ΔMovast2 mutant, which was involved in lipid metabolism and autophagic pathways. These findings confirmed that the functions of MoVast1 were regulated by MoVast2, revealing that MoVast2 combined with MoVast1 maintained lipid homeostasis and autophagy balance by regulating TOR activity in M. oryzae.


Asunto(s)
Magnaporthe , Oryza , Autofagia/genética , Magnaporthe/genética , Magnaporthe/metabolismo , Oryza/genética , Oryza/microbiología , Homeostasis , Esfingolípidos , Esteroles/metabolismo , Lípidos , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología
8.
Int J Pharm ; 625: 122140, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36031167

RESUMEN

Three-dimensional (3D) printing allows for the design and printing of more complex designs than traditional manufacturing processes. For the manufacture of personalised medicines, such an advantage could enable the production of personalised drug products on demand. In this study, two types of extrusion-based 3D printing techniques, semi-solid syringe extrusion 3D printing and fused deposition modelling, were used to fabricate a combi-layer construct (combi-pill). Two model drugs, tranexamic acid (water soluble, rapid release) and indomethacin (poorly water-soluble, extended release), were printed with different geometries and materials compositions. Fourier transform infrared spectroscopy results showed that there were no interactions detected between drug-drug and drug-polymers. The printed combi-pills demonstrated excellent abrasion resisting properties in friability tests. The use of different functional excipients demonstrated significant impact on in vitro drug release of the model drugs incorporated in two 3D printed layers. Tranexamic acid and indomethacin were successfully 3D printed as a combi-pill with immediate-release and sustained-release profiles, respectively, to target quick anti-bleeding and prolonged anti-inflammation functions. For the first time, this paper systematically demonstrates the feasibility of coupling syringe-based extrusion 3D printing and fused deposition modelling as an innovative platform for various drug therapy productions, facilitating a new era of personalised combi-pills development.


Asunto(s)
Jeringas , Ácido Tranexámico , Liberación de Fármacos , Indometacina , Impresión Tridimensional , Comprimidos/química , Tecnología Farmacéutica/métodos , Agua
9.
Comb Chem High Throughput Screen ; 24(8): 1205-1216, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32998675

RESUMEN

BACKGROUND: Colon cancer is one of the most common cancers worldwide and has a poor prognosis. Through the analysis of transcriptome and clinical data of colon cancer, an immune gene-set signature was identified by single sample enrichment analysis (ssGSEA) scoring to predict patient survival and discover new therapeutic targets. OBJECTIVE: To study the role of immune gene-set signature in colon cancer. METHODS: First, RNASeq and clinical follow-up information were downloaded from The Cancer Genome Atlas (TCGA). Immune gene-related gene sets were collected from the ImmPort database. Genes and immunological pathways related to prognosis were screened in the training set and integrated for feature selection using random forest. The immune gene-related prognosis model was verified in the entire TCGA test set and GEO validation set and compared with immune cells scores and matrix score. RESULTS: A total of 1650 prognostic genes and 13 immunological pathways were identified. These genes and pathways are closely related to the development of tumors. 13-immune gene-set signature was established, which is an independent prognostic factor for patients with colon cancer. Risk stratification of samples could be carried out in the training set, test set, and external validation set. The AUC of five-year survival in the training set and validation set is greater than 0.6. Immunosuppression occurs in high-risk samples and compared with published models, riskScore has a better prediction effect. CONCLUSION: This study constructed a 13-immune gene-set signature as a new prognostic marker to predict the survival of patients with colon cancer, and provided new diagnostic/prognostic biomarkers and therapeutic targets for colon cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias del Colon , Biomarcadores de Tumor/genética , Neoplasias del Colon/diagnóstico , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Transcriptoma/genética
10.
J Ethnopharmacol ; 263: 113221, 2020 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-32783984

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese dragon's blood (CDB), a crude drug extracted from Dracaena cochinchinensis (Lour.) S.C. Chen, has been historically applied for the treatment of various diseases, including ulcerative colitis (UC). Unfortunately, the underlying molecular mechanism remains unclear. MATERIALS AND METHODS: In this paper, the effects of CDB treatment on a mouse model of acute UC and proteomic variation in colonic tissue were investigated. The acute UC model in Balb/c mice was induced by administration of 2.5% (wt/vol) dextran sulfate sodium (DSS) in drinking water for 8 days. After the mice with UC were intragastrically administered CDB and intraperitoneally injected with rapamycin (RAPA, a specific inhibitor of mTORC1), the disease activity index (DAI) and histopathological score were recorded. An isobaric tags for relative and absolute quantification (iTRAQ) based LC-MS/MS proteomic technique was adopted to identify the differentially expressed proteins (DEPs) in colonic tissue. Bioinformatics analysis was used to discover the molecular functions and pathways of the DEPs. Finally, Western blot analysis and immunohistochemistry were used to verify the protein expression. RESULTS: The results showed that CDB treatment significantly ameliorated the symptoms and intestinal damage in acute UC, while RAPA treatment led to severe symptoms and intestinal damage. A total of 489 DEPs were reversed in the control check (CK) group and the CDB group. Most DEPs were enriched in the structural constituents of ribosomes and the ribosome pathway. CDB treatment significantly upregulated the expression of the mTOR, p-mTOR and p70S6K proteins and downregulated the expression of the Akt, p-Akt, and p4EBP1 proteins. However, RAPA treatment, unlike CDB, did not return the levels of mTOR, Akt, and their phosphorylated forms to nearly normal. CONCLUSIONS: In conclusion, the dysfunction of the mTOR/ribosome pathway resulting in the inhibition of ribosome synthesis played an important role in the development of acute UC in mice, and CDB, but not RAPA, was an alternative drug for the treatment of acute UC by enhancing ribosome synthesis via the mTOR/ribosome pathway and further promoting protein synthesis.


Asunto(s)
Colitis Ulcerosa/metabolismo , Extractos Vegetales/uso terapéutico , Proteómica/métodos , Ribosomas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Masculino , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/farmacología , Distribución Aleatoria , Ribosomas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA