Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 268(Pt 1): 131659, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641275

RESUMEN

As the most abundant natural homo-polymer, cellulose has the potential to enhance polymer properties reducing the cost of raw materials. In this work, the carboxylate cellulose nanofiber (CNF-C) was selected to modify polylactic acid (PLA) foams, and the density functional theory was constructed to help analyze the foaming mechanism quantitatively. The theoretical results showed that the ordered structure, the carboxyl and the hydroxyl of CNF-C were more conducive to providing much stronger CO2 adsorption for bubble nucleation, where the predicted critical bubble size decreased and the cell density increased with the addition of CNF-C. The experimental results revealed that the CNF-C promoted the rheological properties and crystallization behaviors of PLA samples, the PLA/CNF-C foams were characterized with uniform structures, the average cell size decreased from 21.39 µm to 0.19 µm, and the cell number density increased from 2.65×1010cell/cm3 to 2.30×1014cell/cm3. Those improvements resulted in an increase of 394.0 % for the compressive strength of the prepared foams. Generally, the high-performance PLA/CNF-C foams were fabricated successfully without compromising the properties of bio-based and biodegradable, the foaming mechanism was analyzed combining theoretical results with experimental data, and it was believed to provide a guide for cellulose reinforcing biodegradable polymer materials.


Asunto(s)
Celulosa , Nanofibras , Poliésteres , Celulosa/química , Poliésteres/química , Nanofibras/química , Reología , Dióxido de Carbono/química , Propiedades de Superficie , Cristalización , Adsorción
2.
Int J Biol Macromol ; 257(Pt 2): 128750, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101682

RESUMEN

The open-cell bio-based biodegradable polymer foams show good application prospect in dealing with the serious environmental issue caused by oil spill and organic solvents spills, while the cell structures and hydrophobic properties of the foams limit their performance. In this work, the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was selected to help prepare bio-based biodegradable poly(lactic acid) (PLA) foams. Based on a two-step foaming method, the crystallization ability of different samples was regulated by the "original crystals" together with PHBV in the foaming process, where skeleton structures were provided to facilitate the open-cell structures and promote their mechanical property. As illustrated, PHBV facilitated the formation of open-cell PLA foams, where the foams displayed superior oil-water separation capacity. The maximum volume expansion ratio of the foams was 80.08, the contact angle of deionized water reached to 134.5°, the adsorption capacity for oil or organic solvents was 10.8 g/g-51.8 g/g, and the adsorption capacity for CCl4 can still maintained 83.5 % of the initial value after 10 adsorption-desorption cycles. This work not only clarified the foaming mechanism of open-cell foams, but also provided a green and simple method for preparing bio-based biodegradable foams possessing excellent oil-water separation performance.


Asunto(s)
Poliésteres , Polihidroxibutiratos , Polímeros , Poliésteres/química , Polímeros/química , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA