Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 123(28): 6056-6079, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117592

RESUMEN

We have recently proposed a new unified theoretical scheme (the "middle" scheme) for thermostat algorithms for efficient and accurate configurational sampling of the canonical ensemble. In this paper, we extend the "middle" scheme to molecular dynamics algorithms for configurational sampling in systems subject to constraints. Holonomic constraints and isokinetic constraints are used for demonstration. Numerical examples indicate that the "middle" scheme presents a promising approach to calculate configuration-dependent thermodynamic properties and their thermal fluctuations.

2.
J Chem Phys ; 147(3): 034109, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28734283

RESUMEN

We show a unified second-order scheme for constructing simple, robust, and accurate algorithms for typical thermostats for configurational sampling for the canonical ensemble. When Langevin dynamics is used, the scheme leads to the BAOAB algorithm that has been recently investigated. We show that the scheme is also useful for other types of thermostats, such as the Andersen thermostat and Nosé-Hoover chain, regardless of whether the thermostat is deterministic or stochastic. In addition to analytical analysis, two 1-dimensional models and three typical real molecular systems that range from the gas phase, clusters, to the condensed phase are used in numerical examples for demonstration. Accuracy may be increased by an order of magnitude for estimating coordinate-dependent properties in molecular dynamics (when the same time interval is used), irrespective of which type of thermostat is applied. The scheme is especially useful for path integral molecular dynamics because it consistently improves the efficiency for evaluating all thermodynamic properties for any type of thermostat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA