RESUMEN
Evidence suggests that neurometabolite alterations may be involved in the pathophysiology of autism spectrum disorders (ASDs). We performed a meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies to examine the neurometabolite levels in the brains of patients with ASD. A systematic search of PubMed and Web of Science identified 54 studies for the meta-analysis. A random-effects meta-analysis demonstrated that compared with the healthy controls, patients with ASD had lower N-acetyl-aspartate-containing compound (NAA) and choline-containing compound (Cho) levels and NAA/(creatine-containing compound) Cr ratios in the gray matter and lower NAA and glutamate + glutamine (Glx) levels in the white matter. Furthermore, NAA and gamma-aminobutyric acid (GABA) levels, NAA/Cr ratios, and GABA/Cr ratios were significantly decreased in the frontal cortex of patients with ASD, whereas glutamate (Glu) levels were increased in the prefrontal cortex. Additionally, low NAA levels and GABA/Cr ratios in the temporal cortex, low NAA levels and NAA/Cr ratios in the parietal and dorsolateral prefrontal cortices, and low NAA levels in the cerebellum and occipital cortex were observed in patients with ASD. Meta-regression analysis revealed that age was positively associated with effect size in studies analyzing the levels of gray matter NAA and white matter Glx. Taken together, these results provide strong clinical evidence that neurometabolite alterations in specific brain regions are associated with ASD and age is a confounding factor for certain neurometabolite levels in patients with ASD.
Asunto(s)
Trastorno del Espectro Autista , Humanos , Espectroscopía de Protones por Resonancia Magnética/métodos , Trastorno del Espectro Autista/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Ácido Glutámico , Ácido Aspártico , Colina , Ácido gamma-AminobutíricoRESUMEN
High power continuous-wave (CW) single-frequency 1342 nm lasers are of interest for fundamental research, particularly, for laser cooling of lithium atoms. Using the popular Nd:YVO4 laser crystal requires careful heat management, because strong thermal effects in the gain medium are the most severe limitations of output power. Here, we present a multi-segmented Nd:YVO4 crystal design that consists of three segments with successive doping concentrations, optimized using a theoretical model. In order to quantify the optimization, we measured the thermal lens power of conventional crystal designs and compare them to our multi-segmented design. The optimized design displays a two times lower thermal lens dioptric power for the same amount of absorbed pump power in the non-lasing case. Using the optimized design, we demonstrate a high power all-solid-state laser emitting 10.0 W single-frequency radiation at 1342 nm when operating the laser crystal at room temperature. Further integration of the laser allows us to operate the laser crystal below room temperature for improving output power up to 11.4 W at 8°C. This is explained by the reduction of energy-transfer upconversion and excited-state absorption effects. Stable free-running operation at the low temperature of 8 °C is achieved with the power stability of ± 0.42 % by peak-to-peak fluctuation and frequency peak-to-peak fluctuation of ± 72 MHz in three hours.
RESUMEN
Second-harmonic generation (SHG) is useful for obtaining single-frequency continuous-wave laser sources at various wavelengths for applications ranging from biology to fundamental physics. Using an external power-enhancement cavity is an effective approach to improve the frequency conversion efficiency. However, thermal effects limit the efficiency, particularly, in high-power operation. Therefore, reducing thermal effects is important when designing a cavity. This Letter reports the use of an external ring cavity for SHG, yielding a 5.2 W, 671 nm laser light with a conversion efficiency of 93.8±0.8% which, to the best of our knowledge, is a new record of conversion efficiency for an external ring cavity. It is achieved using a 10 mm length periodically poled potassium titanyl phosphate crystal and a 65 µm radius beam waist in the cavity so as to minimize thermal dephasing and thermal lensing. Furthermore, a method is developed to determine a conversion efficiency more accurately based on measuring the pump depletion using a photodiode detector and a maximum pump depletion up to 97% is recorded. In this method, the uncertainty is much less than that achieved in a common method by direct measuring with a power meter.
RESUMEN
BACKGROUND: Thrombocytopenia is commonly observed in patients with sepsis and is an independent risk factor for poor prognosis. However, the changes of platelet count caused by different pathogens can vary significantly. Our study aims to evaluate the quantitative changes in platelet count in response to various pathogens. MATERIAL AND METHODS: We retrospectively analysed data of 3044 patients with sepsis from Medical Information Mart for Intensive Care (MIMIC, 2008-2019) database and prospectively collected data of 364 patients with sepsis from our local cohort of the Shandong Bloodstream Infection and Sepsis Collaboration Study (SBISC, 2020-2022). Propensity score matching (PSM) was employed to control for baseline differences in variables, except for the causative pathogen. RESULTS: Multivariate logistic analyses of both original and PSM populations identified Candida, Escherichia, Klebsiella, and Serratia species posing a higher risk for thrombocytopenia compared to others. Restricted cubic spline (RCS) curves showed L- or U-shaped associations between platelet count and 28-mortality with various cut-off values among different pathogens: ranging from 96 × 109/L in Candida species - 190 × 109/L in Klebsiella species. CONCLUSION: Our present findings indicate a pathogen-specific effect on platelet count, highlighting the importance of monitoring thrombocytopenia in patients infected with above microorganisms. Clinicians need to consider pathogen-specific thresholds when intervene on platelet count.
This study validated the differential incidence of thrombocytopenia among various pathogens within two distinct populations.Candida, Escherichia, Klebsiella, and Serratia species were identified as having a notably higher risk of causing thrombocytopenia compared to other pathogens.We observed L- or U-shaped relationships between platelet counts and 28-day mortality in Candida species, Enterococcus species, Escherichia species, Enterobacter species, Staphylococcus species, and Klebsiella species with platelet count cutoff values of 96 × 109/L, 100 × 109/L, 100 × 109/L, 146 × 109/L, 152 × 109/L, and 190 × 109/L, respectively.