Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Opt Express ; 30(10): 16031-16043, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221456

RESUMEN

Refractive index (RI) sensing plays an important role in analytical chemistry, medical diagnosis, and environmental monitoring. The optofluidic technique is considered to be an ideal tool for RI sensor configuration for its high integration, high sensitivity, and low cost. However, it remains challenging to achieve RI measurement in real time with high sensitivity and low detection limit (DL) simultaneously. In this work, we design and fabricate a RI sensor with an arched optofluidic waveguide by monitoring the power loss of the light passing through the waveguide, which is sandwiched by the air-cladding and the liquid-cladding under test, we achieve RI detection of the sample in real time and with high sensitivity. Furthermore, both numerical simulation and experimental investigation show that our RI sensor can be designed with different geometric parameters to cover multiple RI ranges with high sensitivities for different applications. Experimental results illustrate that our sensor is capable to achieve a superior sensitivity better than -19.2 mW/RIU and a detection limit of 5.21×10-8 RIU in a wide linear dynamic range from 1.333 to 1.392, providing a promising solution for real-time and high-sensitivity RI sensing.


Asunto(s)
Refractometría , Simulación por Computador , Refractometría/métodos
2.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616696

RESUMEN

Limited by computing resources of embedded devices, there are problems in the field of fabric defect detection, including small defect size, extremely unbalanced aspect ratio of defect size, and slow detection speed. To address these problems, a sliding window multihead self-attention mechanism is proposed for the detection of small targets, and the Swin Transformer module is introduced to replace the main module in the original YOLOv5 algorithm. First, to reduce the distance between several scales, the weighted bidirectional feature network is employed on embedded devices. In addition, it is helpful to improve the perception of small-target faults by incorporating a detection layer to achieve four-scale detection. At last, to improve the learning of positive sample instances and lower the missed detection rate, the generalized focal loss function is finally implemented on YOLOv5. Experimental results show that the accuracy of the improved algorithm on the fabric dataset reaches 85.6%, and the mAP is increased by 4.2% to 76.5%, which meets the requirements for real-time detection on embedded devices.

3.
Opt Express ; 28(12): 18283-18295, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32680027

RESUMEN

Recently, the design of metamaterial guided by transformation optics (TO) has emerged as an effective method to hide objects from optical detection, based on arranging a bended light beam to detour. However, this TO-based solution involves fabrication of material with complicated distribution of permittivity and permeability, and the device falls short of tunability after fabrication. In this work, we propose an optofluidic model employing the method of streamline tracing-based transformation optofluidics (STTOF) to hydrodynamically reconfigure light propagation in a given flow field for object-cloaking purposes. The proof-of-concept is demonstrated and tested on an optofluidic chip to validate our proposed theory. Experimental results show that our proposed STTOF method can be used to successfully detour the light path from the object under cloaking in a mathematically pre-defined manner.

4.
Opt Express ; 27(2): 1425-1432, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30696208

RESUMEN

In this work, we develop a new opto-acouto-fludic microsopic system, which employs a high-speed one-dimensional galvanometer scanner and an ultrafast pulse laser (600 kHz). The new system has achieved a high two-dimensional frame rate of up to 2500 Hz with a lateral resolution of 1.7 µm and an axial resolution of 36 µm at the imaging plane. To demonstrate the improved performance of the new system compared to our previous one, we carried out experiments to image the flowing droplets generated with T-junction and flow focusing configurations. We also successfully imaged dynamic migration of magneto particles subjected to non-uniform magnetic field in the microchannel. The results suggest that our new system has sufficient spatiotemporal resolutions to carry out studies for high throughput microfluidic applications.

5.
Biotechnol Adv ; 71: 108317, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38220118

RESUMEN

The separation of specific cell populations is instrumental in gaining insights into cellular processes, elucidating disease mechanisms, and advancing applications in tissue engineering, regenerative medicine, diagnostics, and cell therapies. Microfluidic methods for cell separation have propelled the field forward, benefitting from miniaturization, advanced fabrication technologies, a profound understanding of fluid dynamics governing particle separation mechanisms, and a surge in interdisciplinary investigations focused on diverse applications. Cell separation methodologies can be categorized according to their underlying separation mechanisms. Passive microfluidic separation systems rely on channel structures and fluidic rheology, obviating the necessity for external force fields to facilitate label-free cell separation. These passive approaches offer a compelling combination of cost-effectiveness and scalability when compared to active methods that depend on external fields to manipulate cells. This review delves into the extensive utilization of passive microfluidic techniques for cell separation, encompassing various strategies such as filtration, sedimentation, adhesion-based techniques, pinched flow fractionation (PFF), deterministic lateral displacement (DLD), inertial microfluidics, hydrophoresis, viscoelastic microfluidics, and hybrid microfluidics. Besides, the review provides an in-depth discussion concerning cell types, separation markers, and the commercialization of these technologies. Subsequently, it outlines the current challenges faced in the field and presents a forward-looking perspective on potential future developments. This work hopes to aid in facilitating the dissemination of knowledge in cell separation, guiding future research, and informing practical applications across diverse scientific disciplines.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Filtración , Separación Celular , Dispositivos Laboratorio en un Chip , Microfluídica
6.
Lab Chip ; 23(6): 1703-1712, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36799214

RESUMEN

Acute leukemia (AL) is one of the top life-threatening diseases. Accurate typing of AL can significantly improve its prognosis. However, conventional methods for AL typing often require cell staining, which is time-consuming and labor-intensive. Furthermore, their performance is highly limited by the specificity and availability of fluorescent labels, which can hardly meet the requirements of AL typing in clinical settings. Here, we demonstrate AL typing by intelligent optical time-stretch (OTS) imaging flow cytometry on a microfluidic chip. Specifically, we employ OTS microscopy to capture the images of cells in clinical bone marrow samples with a spatial resolution of 780 nm at a high flowing speed of 1 m s-1 in a label-free manner. Then, to show the clinical utility of our method for which the features of clinical samples are diverse, we design and construct a deep convolutional neural network (CNN) to analyze the cellular images and determine the AL type of each sample. We measure 30 clinical samples composed of 7 acute lymphoblastic leukemia (ALL) samples, 17 acute myelogenous leukemia (AML) samples, and 6 samples from healthy donors, resulting in a total of 227 620 images acquired. Results show that our method can distinguish ALL and AML with an accuracy of 95.03%, which, to the best of our knowledge, is a record in label-free AL typing. In addition to AL typing, we believe that the high throughput, high accuracy, and label-free operation of our method make it a potential solution for cell analysis in scientific research and clinical settings.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Citometría de Flujo/métodos , Microfluídica , Dispositivos Laboratorio en un Chip
7.
Lab Chip ; 23(16): 3571-3580, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37401791

RESUMEN

Imaging flow cytometry (IFC) is a powerful tool for cell detection and analysis due to its high throughput and compatibility in image acquisition. Optical time-stretch (OTS) imaging is considered as one of the most promising imaging techniques for IFC because it can realize cell imaging at a flow speed of around 60 m s-1. However, existing PDMS-based microchannels cannot function at flow velocities higher than 10 m s-1; thus the capability of OTS-based IFC is significantly limited. To overcome the velocity barrier for PDMS-based microchannels, we proposed an optimized design of PDMS-based microchannels with reduced hydraulic resistance and 3D hydrodynamic focusing capability, which can drive fluids at an ultra-high flow velocity (of up to 40 m s-1) by using common syringe pumps. To verify the feasibility of our design, we fabricated and installed the microchannel in an OTS IFC system. The experimental results first proved that the proposed microchannel can support a stable flow velocity of up to 40 m s-1 without any leakage or damage. Then, we demonstrated that the OTS IFC is capable of imaging cells at a velocity of up to 40 m s-1 with good quality. To the best of our knowledge, it is the first time that IFC has achieved such a high flow velocity just by using a PDMS-glass chip. Moreover, high velocity can enhance the focusing of cells on the optical focal plane, increasing the number of detected cells and the throughput. This work provides a promising solution for IFC to fully release its capability of advanced imaging techniques by operating at an extremely high screening throughput.


Asunto(s)
Dispositivos Laboratorio en un Chip , Imagen Óptica , Citometría de Flujo/métodos , Hidrodinámica
8.
Environ Pollut ; 297: 118791, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34998893

RESUMEN

Tetrabromobisphenol A (TBBPA), which is the most widely employed brominated flame retardant, and its alternative tetrachlorobisphenol A (TCBPA) are widely distributed in aquatic environments. In the present study, the hepatotoxicity induced by TBBPA and TCBPA was investigated in Rana nigromaculata, and the potential mechanisms were investigated with a particular focus on ROS (reactive oxygen species) -dependent mitochondria-mediated apoptosis. Healthy adult frogs were exposed to 0, 0.001, 0.01, 0.1, and 1 mg/L waterborne TBBPA and TCBPA for 14 days. The results showed that liver weight was significantly increased by 51.52%-98.99% in the 0.01, 0.1, and 1 mg/L TBBPA and TCBPA groups relative to the control. Histological examination revealed that the structure of the liver, to some extent, was influenced by TBBPA and TCBPA with nuclear shrinkage and mitochondrial swelling. Meanwhile, TBBPA and TCBPA have significantly increased the alanine transaminase level in serum and the content of ROS, while inhibiting the activity of superoxide dismutase in the liver. In addition, DNA fragments were observed in the TBBPA and TCBPA groups relative to the control. Expression of Cytochrome C was significantly increased by 1.13-, 1.38-, 1.60-, and 2.46-fold in 0.001, 0.01, 0.1, and 1 mg/L TBBPA, and by 1.26-, 1.51-, 2.14-, and 2.98- fold in 0.001, 0.01, 0.1, and 1 mg/L TCBPA, respectively, which indicated that TCBPA may be more toxic than TBBPA. Similarly, the ratio of Bax/Bcl-2 was increased in a dose-dependent manner. These results indicated that apoptosis in the ROS-dependent mitochondrial pathway mediates hepatotoxicity caused by TBBPA and TCBPA. The present study will facilitate an understanding of the toxicity mechanism of flame retardants.


Asunto(s)
Retardadores de Llama , Bifenilos Polibrominados , Animales , Apoptosis , Retardadores de Llama/toxicidad , Hígado , Mitocondrias , Bifenilos Polibrominados/toxicidad , Ranidae , Especies Reactivas de Oxígeno
9.
Chemosphere ; 261: 127715, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32717514

RESUMEN

Advanced oxidation processes (AOPs) based on the activation of hydrogen peroxide (H2O2) and persulfate (PS) by minerals have received increasing interest for environmental remediation. Herein, H2O2 and PS activation systems employing goethite as a catalyst were discovered for the rapid degradation of BPA with the generation of reactive oxidation species (ROS) and for the reduction of total organic carbon (TOC) in aqueous solutions. The morphology of goethite were characterized by XRD, SEM, BET, TEM, etc. As a result, the oxidant efficiency of the goethite/H2O2 system (75.9%) was higher than that of the goethite/PS system (61.4%) after 240 min due to the restricted radical scavenging. According to the results of electron paramagnetic resonance (EPR) and radical quenching experiments, the main active ROS during the BPA degradation process were OH and SO4-. The two reaction systems were all pH-dependent that BPA can be effectively degraded in the goethite/PS system under acidic, neutral and weakly alkaline conditions, while the most inefficient degradation under alkaline conditions in the goethite/H2O2 system. Moreover, goethite showed good structural stability in the two systems. Several reaction products were detected using LC-MS, and the mechanisms for three systems were proposed. Density functional theory (DFT) was employed to study the conceivable degradation pathways of BPA in the two processes. This work reveals novel mechanistic insights regarding H2O2 and PS activation over goethite and implies the great potential application of the PS/mineral process in water and wastewater treatment.


Asunto(s)
Compuestos de Bencidrilo/química , Fenoles/química , Contaminantes Químicos del Agua/química , Restauración y Remediación Ambiental , Peróxido de Hidrógeno/química , Compuestos de Hierro , Minerales , Oxidantes , Oxidación-Reducción , Sulfatos/química , Aguas Residuales , Contaminantes Químicos del Agua/análisis
10.
J Hazard Mater ; 384: 121255, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31590087

RESUMEN

Polychlorinated dibenzo-p-dioxins (PCDDs), characterized by their high persistency and bioaccumulation, are widely detected in the environment. In this study, high-performance g-C3N4/NiO heterojunctions were fabricated to degrade 2-chlorodibenzo-p-dioxin (2-CDD) under ultraviolet-visible (UV-vis) light illumination. Experiments revealed that the pure g-C3N4 and range of g-C3N4/NiO heterojunctions were synthesized by the mixing and heating method, and then were characterized by XRD, TEM, XPS and PL etc. The composites exhibited enhanced dechlorination activities under anoxic conditions. After comparison, the g-C3N4/NiO (4:6) showed optimal dechlorination performance such that 70.4% of 2-CDD was removed within 8 h and 52.3% of 2-CDD was transformed to dibenzo-p-dioxin (DD), about fourfold higher than the pristine g-C3N4. The transformation of 2-CDD was accompanied by the resale of Cl ion, and the additional oxygen was proven to be able to consume electrons and hydrogen ions, thus greatly inhibiting the degradation of PCDD in systems. The g-C3N4/NiO (4:6) can be reused at least seven times, and the mechanism was proposed in detail to promote photoinduced electrohole separation and provide active sites. This study extends the use range of g-C3N4/NiO heterojunctions and develops a new technology to degrade PCDDs with striking activity and stability.

11.
Lab Chip ; 18(9): 1292-1297, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29619468

RESUMEN

This paper reports a novel method, opto-acousto-fluidic microscopy, for label-free detection of droplets and cells in microfluidic networks. Leveraging the optoacoustic effect, the microscopic system possesses capabilities of visualizing flowing droplets, analyzing droplet contents, and detecting cell populations encapsulated in droplets via the sensing of acoustic waves induced by the intrinsic light-absorbance of matter.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Microscopía/instrumentación , Técnicas Fotoacústicas/instrumentación , Animales , Diseño de Equipo , Eritrocitos/citología , Microscopía/métodos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA