Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(15): e202401770, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38361043

RESUMEN

High-purity octafluoropropane (C3F8) electronic specialty gas is a key chemical raw material in semiconductor and integrated circuit manufacturing industry, while selective removal of hexafluoropropylene (C3F6) impurity for C3F8 purification is essential but a challenging task. Here we report a fluorinated cage-like MOF Zn-bzc-CF3 (bzc=5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid) for C3F6/C3F8 separation. The incorporation of -CF3 groups not only provides suitable pore aperture size for highly efficient size-exclusive C3F6/C3F8 separation, but also creates hydrophobic microenvironments, endowing Zn-bz-CF3 high chemical stability. Remarkably, Zn-bzc-CF3 exhibits high C3F6 adsorption capacity while excluding C3F8, achieving ideal molecular-sieving C3F6/C3F8 separation. Breakthrough experiments show that Zn-bzc-CF3 can efficiently separate C3F6/C3F8 mixture and high-purity C3F8 (99.9 %) can be obtained.

2.
Inorg Chem ; 62(14): 5593-5601, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36989440

RESUMEN

A great demand for high-purity C2 hydrocarbons calls for the development of chemically stable porous materials for the effective isolation of C2 hydrocarbons from CH4 and CO2. However, such separations are challenged by their similar physiochemical parameters and have not been systematically studied to date. In this work, we reported a cadmium-based rod-packing coordination framework compound ZJNU-140 of a new 5,6,7-c topology built up from a custom-designed tricarboxylate ligand. The metal-organic framework (MOF) features an aromatic-abundant pore surface, uncoordinated amine functionality, and self-partitioned pore space of suitable size. These structural characteristics act synergistically to provide the MOF with both selective recognition ability and the confinement effect toward C2 hydrocarbons. As a result, the MOF displays promising potential for adsorptive separation of C2-CH4 and C2-CO2 mixtures. The IAST-predicted C2/CH4 and C2/CO2 adsorption selectivities, respectively, fall in the ranges of 7.3-10.2 and 2.1-2.9 at 298 K and 109 kPa. The real separation performance was also confirmed by dynamic breakthrough experiments. In addition, the MOF can maintain skeleton intactness in aqueous solutions with a wide pH range of 3-11, as confirmed by powder X-ray diffraction (PXRD) and isotherm measurements, showing no loss of framework integrity and porosity. The excellent hydrostability, considerable uptake capacity, impressive adsorption selectivity, and mild regeneration make ZJNU-140 a promising adsorbent material applied for the separation and purification of C2 hydrocarbons.

3.
J Phys Chem A ; 126(45): 8476-8486, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36343215

RESUMEN

A combination of high-throughput molecular simulation and machine learning (ML) algorithms has been widely adopted to seek promising metal-organic frameworks (MOFs) as energy gas carriers. However, the currently reported studies are mainly limited to extracting top performers from existing databases, not fully unleashing the ML capabilities for intelligently predicting novel structures with better performance. Herein, an efficient self-evolutionary methodology was proposed for searching high-performance MOFs that are unstructured in the origin database, in which a Tangent Adaptive Genetic Algorithm (TAGA) was newly put forward for structural evolution and the high-precision ML model of eXtreme Gradient Boosting (XGBoost) was employed as the fitness function. By taking CH4 storage in MOFs at room temperature as a showcase and using the database of 51,163 hMOFs, the TAGA-XGBoost coupling strategy rapidly suggested a certain number of possible combinations of the building blocks to form new structures with gravimetric storage capacity (35 bar) and volumetric working capacity (65-5.8 bar) higher than the best materials in the original database. The structures of some promising MOFs successfully used the finally optimized material genes for the two application conditions, and their performances were also confirmed by subsequent molecular simulations. The best materials can respectively reach a storage amount of 580 cm3(STP)/g at 35 bar and a working capacity of 218 cm3(STP)/cm3 between 65 and 5.8 bar. An analysis of the top 100 materials predicted from our method revealed that the choice of organic linkers has a systematic effect on the storage performance of MOFs. It might be believed that the proposed methodology offers an opportunity to expedite the discovery of unprecedented materials for other practical applications.


Asunto(s)
Estructuras Metalorgánicas , Simulación por Computador , Algoritmos , Aprendizaje Automático
4.
Inorg Chem ; 60(23): 17440-17444, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34756021

RESUMEN

Global warming associated with CO2 emission has led to frequent extreme weather events in recent years. Carbon capture using porous solid adsorbents is promising for addressing the greenhouse effect. Herein, we report a series of robust metal-organic cages (MOCs) featuring various functional groups, such as methyl and amine groups, for CO2/N2 separation. Significantly, the amine-group-functionalized MOC-QW-3-NH2 displays the best selective CO2 adsorption performance, as confirmed by single-component adsorption and transient breakthrough experiments. The distinct CO2 adsorption mechanism has been well studied via theoretical calculations, confirming that the amine groups play a vital role for efficiently selective CO2 adsorption resulting from hierarchical adsorbate-framework interaction.

5.
Chem Sci ; 14(2): 298-309, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36687342

RESUMEN

Propyne/propylene (C3H4/C3H6) separation is an important industrial process yet challenged by the trade-off of selectivity and capacity due to the molecular similarity. Herein, record C3H4/C3H6 separation performance is achieved by fine tuning the pore structure in anion pillared MOFs. SIFSIX-Cu-TPA (ZNU-2-Si) displays a benchmark C3H4 capacity (106/188 cm3 g-1 at 0.01/1 bar and 298 K), excellent C3H4/C3H6 IAST selectivity (14.6-19.3) and kinetic selectivity, and record high C3H4/C3H6 (10/90) separation potential (36.2 mol kg-1). The practical C3H4/C3H6 separation performance is fully demonstrated by breakthroughs under various conditions. 37.8 and 52.9 mol kg-1 of polymer grade C3H6 can be produced from 10/90 and 1/99 C3H4/C3H6 mixtures. 4.7 mol kg-1 of >99% purity C3H4 can be recovered by a stepped desorption process. Based on the in situ single crystal analysis and DFT calculation, an unprecedented entropy-enthalpy balanced adsorption pathway is discovered. MD simulation further confirmed the thermodynamic-kinetic synergistic separation of C3H4/C3H6 in ZNU-2-Si.

6.
ACS Appl Mater Interfaces ; 14(22): 25374-25384, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35623040

RESUMEN

Efficient separation of the CH4/N2 mixture is of great significance for coalbed methane purification. It is an effective strategy to separate this mixture by tuning the van der Waals interaction due to the nonpolar properties of CH4 and N2 molecules. Herein, we prepared several isoreticular Al-based metal-organic frameworks (MOFs) with different ligand sizes and polarities because of their high structural stability and low cost/toxicity feature of Al metal. Adsorption experiments indicated that the CH4 uptake, Qst of CH4, and CH4/N2 selectivity are in the order of Al-FUM-Me (27.19 cm3(STP) g-1, 24.06 kJ mol-1 and 8.6) > Al-FUM (20.44 cm3(STP) g-1, 20.60 kJ mol-1 and 5.1) > Al-BDC (15.98 cm3(STP) g-1, 18.81 kJ mol-1 and 3.4) > Al-NDC (10.86 cm3(STP) g-1, 14.89 kJ mol-1 and 3.1) > Al-BPDC (5.90 cm3(STP) g-1, 11.75 kJ mol-1 and 2.2), confirming the synergetic effects of pore sizes and pore surface polarities. Exhilaratingly, the ideal adsorbed solution theory selectivity of Al-FUM-Me is higher than those of all zeolites, carbon materials, and most water-stable MOF materials (except Al-CDC and Co3(C4O4)2(OH)2), which is comparable to MIL-160. Breakthrough results demonstrate its excellent separation performance for the CH4/N2 mixture with good regenerability. The separation mechanism of Al-FUM-Me for the CH4/N2 mixture was elucidated by theoretical calculations, showing that the stronger affinity of CH4 can be attributed to its relatively shorter interaction distance with adsorption binding sites. Therefore, this work not only offers a promising candidate for CH4/N2 separation but also provides valuable guidance for the design of high-performance adsorbents.

7.
ACS Appl Mater Interfaces ; 14(50): 56353-56362, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36511382

RESUMEN

Discovery of remarkable porous materials for CO2 capture from wet flue gas is of great significance to reduce the CO2 emissions, but elucidating the most critical structure features for boosting CO2 capture capabilities remains a great challenge. Here, machine-learning-assisted Monte Carlo computational screening on 516 experimental covalent organic frameworks (COFs) identifies the superior secondary building units (SBUs) for wet flue gas separation using COFs, which are tetraphenylporphyrin units for boosting CO2 adsorption uptake and functional groups for boosting CO2/N2 selectivity. Accordingly, 1233 COFs are assembled using the identified superior SBUs. Density functional theory calculation analysis on frontier orbitals, electrostatic potential, and binding energy reveals the influencing mechanism of the SBUs on the wet flue gas separation performance. The "electron-donating-induced vdW interaction" effect is discovered to construct the better-performing COFs, which can achieve high CO2 uptake of 4.4 mmol·g-1 with CO2/N2 selectivity of 104.8. Meanwhile, the "electron-withdrawing-induced vdW + electrostatic coupling interaction" effect is unearthed to construct the better-performing COFs with superior CO2/N2 selectivity, which can reach 277.6 with CO2 uptake of 2.2 mmol·g-1; in this case, H2O plays a positive contribution in improving CO2/N2 selectivity. This work provides useful guidelines for designing optimized two-dimensional-COF adsorbents for wet flue gas separation.

8.
ACS Cent Sci ; 8(2): 184-191, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35233451

RESUMEN

Pore engineering plays a significant role in the applications of porous materials, especially in the area of separation and catalysis. Here, we demonstrated a metal-organic framework (MOF) solid solution (MOSS) strategy to homogeneously and controllably mix NU-1000 and NU-901 structures inside single MOF nanocrystals. The key for the homogeneous mixing and forming of MOSS was the bidentate modulator, which was designed to have a slightly longer distance between two carboxylate groups than the original tetratopic ligand. All of the MOSS nanocrystals showed a uniform pore size distribution with a well-tuned ratio of mesopores to micropores. Because of the appropriate pore ratio, MOSS nanocrystals can balance the thermodynamic interactions and kinetic diffusion of the substrates, thus showing exceedingly higher separation abilities and a unique elution sequence. Our work proposes a rational strategy to design mixed-porous MOFs with controlled pore ratios and provides a new direction to design homogeneously mixed MOFs with a high separation ability and unique separation selectivity.

9.
ACS Appl Mater Interfaces ; 14(40): 45444-45450, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178410

RESUMEN

Adsorptive separation based on porous solid adsorbents has emerged as an excellent effective alternative to energy-intensive conventional separation methods in a low energy cost and high working capacity manner. However, there are few stable mesoporous metal-organic frameworks (MOFs) for efficient purification of methane from other light hydrocarbons in natural gas. Herein, we report a series of stable mesoporous MOFs, MIL-101-Cr/Fe/Fe-NH2, for efficient separation of CH4 and C3H8 from a ternary mixture CH4/C2H6/C3H8. Experimental results show that all three MOFs possess excellent thermal, acid/basic, and hydrothermal stability. Single-component adsorption suggested that they have high C3H8 adsorption capacity and commendable selectivity for C3H8 and C2H6 over CH4. Transient breakthrough experiments further certified the ability of direct separation of CH4 from simulated natural gas and indirect recovery of C3H8 from the packing column. Theoretical calculations illustrated that the van der Waals force proportional to the molecular weight is the key factor and that the structural integrity and defect can impact separation performances.

10.
ACS Omega ; 6(13): 9066-9076, 2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33842776

RESUMEN

The inert gases Xe and Kr mainly exist in the used nuclear fuel (UNF) with the Xe/Kr ratio of 20:80, which it is difficult to separate. In this work, based on the G-MOFs database, high-throughput computational screening for metal-organic frameworks (MOFs) with high Xe/Kr adsorption selectivity was performed by combining grand canonical Monte Carlo (GCMC) simulations and machine learning (ML) technique for the first time. From the comparison of eight classical ML models, it is found that the XGBoost model with seven structural descriptors has superior accuracy in predicting the adsorption and separation performance of MOFs to Xe/Kr. Compared with energetic or electronic descriptors, structural descriptors are easier to obtain. Note that the determination coefficients R 2 of the generalized model for the Xe adsorption and Xe/Kr selectivity are very close to 1, at 0.951 and 0.973, respectively. In addition, 888 and 896 MOFs have been successfully predicted by the XGBoost model among the top 1000 MOFs in adsorption capacity and selectivity by GCMC simulation, respectively. According to the feature engineering of the XGBoost model, it is shown that the density (ρ), porosity (ϕ), pore volume (Vol), and pore limiting diameter (PLD) of MOFs are the key features that affect the Xe/Kr adsorption property. To test the generalization ability of the XGBoost model, we also tried to screen MOF adsorbents on the CO2/CH4 mixture, it is found that the prediction performance of XGBoost is also much better than that of the traditional machine learning models although with the unbalanced data. Note that the dimension of features of MOFs is low while the quantity of MOF samples in database is very large, which is suitable for the prediction by model such as XGBoost to search the global minimum of cost function rather than the model involving feature creation. The present study represents the first report using the XGBoost algorithm to discover the MOF adsorbates.

11.
ACS Appl Mater Interfaces ; 13(49): 58982-58993, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34854665

RESUMEN

Solvent-assisted ligand incorporation (SALI) of the ditopic linker 5-carboxy-3-(4-carboxybenzyl)thiazolium bromide [(H2PhTz)Br] into the zirconium metal-organic framework NU-1000 [Zr6O4(OH)8(H2O)4(TBAPy)2, where NU = Northwestern University and H4TBAPy = 1,3,6,8-tetrakis(p-benzoic-acid)pyrene], led to the SALIed NU-1000-PhTz material of minimal formula [Zr6O4(OH)6(H2O)2(TBAPy)2(PhTz)]Br. NU-1000-PhTz has been thoroughly characterized in the solid state. As confirmed by powder X-ray diffraction, this material keeps the same three-dimensional architecture of NU-1000 and the dicarboxylic extra linker bridges adjacent [Zr6] nodes ca. 8 Å far apart along the crystallographic c-axis. The functionalized MOF has a BET specific surface area of 1560 m2/g, and it is featured by a slightly higher thermal stability than its parent material (Tdec = 820 vs. 800 K, respectively). NU-1000-PhTz has been exploited for the capture and separation of two pollutant gases: carbon dioxide (CO2) and nitrous oxide (N2O). The high thermodynamic affinity for both gases [isosteric heat of adsorption (Qst) = 25 and 27 kJ mol-1 for CO2 and N2O, respectively] reasonably stems from the strong interactions between these (polar) "stick-like" molecules and the ionic framework. Intriguingly, NU-1000-PhTz shows an unprecedented temperature-dependent adsorption capacity, loading more N2O in the 298 K ≤ T ≤ 313 K range but more CO2 at temperatures falling out of this range. Grand canonical Monte Carlo simulations of the adsorption isotherms confirmed that the preferential adsorption sites of both gases are the triangular channels (micropores) in close proximity to the polar pillar. While CO2 interacts with the thiazolium ring in an "end-on" fashion through its O atoms, N2O adopts a "side-on" configuration through its three atoms simultaneously. These findings open new horizons in the discovery of functional materials that may discriminate between polluting gases through selective adsorption at different temperatures.

12.
Chem Asian J ; 14(20): 3688-3693, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31380607

RESUMEN

CH4 /N2 separation is one of the great challenges in gas separation, which is of scientific and practical importance, such as in the upgrading of unconventional natural gas. Unfortunately, the separation performance is still quite low so far mainly due to their very close physical properties. In this work, a high-throughput computational screening method was performed to develop metal-organic frameworks (MOFs) for efficient CH4 /N2 separation. General designing rules as well as the correlation between selectivity and our proposed adsorbility (AD) parameter were obtained by carrying out systematic GCMC simulations of the existing 5109 CoRE MOFs. With the aid of this information, five virtual MOFs were screened out from the large database with 303 991 generated MOFs constructed in our previous work, exhibiting much higher selectivities than all the reported values. Among them, the selectivity of Zn-PYZ-BPY-1 can reach over 29.0, about 2.4 times of the highest value reported in the literature. These results may not only suggest promising candidates for CH4 /N2 separation but also provide useful information for large screening of MOFs for other specific separation mixtures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA