Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 42(14): 2872-2884, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35197316

RESUMEN

Mossy cells (MCs) of the dentate gyrus are key components of an excitatory associative circuit established by reciprocal connections with dentate granule cells (GCs). MCs are implicated in place field encoding, pattern separation, and novelty detection, as well as in brain disorders such as temporal lobe epilepsy and depression. Despite their functional relevance, little is known about the determinants that control MC activity. Here, we examined whether MCs express functional kainate receptors (KARs), a subtype of glutamate receptors involved in neuronal development, synaptic transmission, and epilepsy. Using mouse hippocampal slices, we found that bath application of submicromolar and micromolar concentrations of the KAR agonist kainic acid induced inward currents and robust MC firing. These effects were abolished in GluK2 KO mice, indicating the presence of functional GluK2-containing KARs in MCs. In contrast to CA3 pyramidal cells, which are structurally and functionally similar to MCs and express synaptic KARs at mossy fiber (MF) inputs (i.e., GC axons), we found no evidence for KAR-mediated transmission at MF-MC synapses, indicating that most KARs at MCs are extrasynaptic. Immunofluorescence and immunoelectron microscopy analyses confirmed the extrasynaptic localization of GluK2-containing KARs in MCs. Finally, blocking glutamate transporters, a manipulation that increases extracellular levels of endogenous glutamate, was sufficient to induce KAR-mediated inward currents in MCs, suggesting that MC-KARs can be activated by increases in ambient glutamate. Our findings provide the first direct evidence of functional extrasynaptic KARs at a critical excitatory neuron of the hippocampus.SIGNIFICANCE STATEMENT Hilar mossy cells (MCs) are an understudied population of hippocampal neurons that form an excitatory loop with dentate granule cells. MCs have been implicated in pattern separation, spatial navigation, and epilepsy. Despite their importance in hippocampal function and disease, little is known about how MC activity is recruited. Here, we show for the first time that MCs express extrasynaptic kainate receptors (KARs), a subtype of glutamate receptors critically involved in neuronal function and epilepsy. While we found no evidence for synaptic KARs in MCs, KAR activation induced strong action potential firing of MCs, raising the possibility that extracellular KARs regulate MC excitability in vivo and may also promote dentate gyrus hyperexcitability and epileptogenesis.


Asunto(s)
Fibras Musgosas del Hipocampo , Receptores de Ácido Kaínico , Animales , Ácido Glutámico , Ácido Kaínico , Ratones , Fibras Musgosas del Hipocampo/fisiología , Células Piramidales/fisiología , Receptores de Ácido Kaínico/metabolismo , Sinapsis/fisiología
2.
FASEB J ; 36(2): e22123, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34972242

RESUMEN

GABA is a major neurotransmitter in the mammalian central nervous system. Glutamate decarboxylase (GAD) synthesizes GABA from glutamate, and two isoforms of GAD, GAD65, and GAD67, are separately encoded by the Gad2 and Gad1 genes, respectively. The phenotypes differ in severity between GAD single isoform-deficient mice and rats. For example, GAD67 deficiency causes cleft palate and/or omphalocele in mice but not in rats. In this study, to further investigate the functional roles of GAD65 and/or GAD67 and to determine the contribution of these isoforms to GABA synthesis during development, we generated various kinds of GAD isoform(s)-deficient rats and characterized their phenotypes. The age of death was different among Gad mutant rat genotypes. In particular, all Gad1-/- ; Gad2-/- rats died at postnatal day 0 and showed little alveolar space in their lungs, suggesting that the cause of their death was respiratory failure. All Gad1-/- ; Gad2-/- rats and 18% of Gad1-/- ; Gad2+/- rats showed cleft palate. In contrast, none of the Gad mutant rats including Gad1-/- ; Gad2-/- rats, showed omphalocele. These results suggest that both rat GAD65 and GAD67 are involved in palate formation, while neither isoform is critical for abdominal wall formation. The GABA content in Gad1-/- ; Gad2-/- rat forebrains and retinas at embryonic day 20 was extremely low, indicating that almost all GABA was synthesized from glutamate by GADs in the perinatal period. The present study shows that Gad mutant rats are a good model for further defining the role of GABA during development.


Asunto(s)
Glutamato Descarboxilasa/deficiencia , Hueso Paladar/embriología , Prosencéfalo/embriología , Retina/embriología , Animales , Glutamato Descarboxilasa/metabolismo , Ratas , Ratas Mutantes
3.
FASEB J ; 35(2): e21224, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33236473

RESUMEN

GABA is synthesized by glutamate decarboxylase (GAD), which has two isoforms, namely, GAD65 and GAD67, encoded by the Gad2 and Gad1 genes, respectively. GAD65-deficient (Gad2-/- ) mice exhibit a reduction in brain GABA content after 1 month of age and show spontaneous seizures in adulthood. Approximately 25% of Gad2-/- mice died by 6 months of age. Our Western blot analysis demonstrated that the protein expression ratio of GAD65 to GAD67 in the brain was greater in rats than in mice during postnatal development, suggesting that the contribution of each GAD isoform to GABA functions differs between these two species. To evaluate whether GAD65 deficiency causes different phenotypes between rats and mice, we generated Gad2-/- rats using TALEN genome editing technology. Western blot and immunohistochemical analyses with new antibodies demonstrated that the GAD65 protein was undetectable in the Gad2-/- rat brain. Gad2-/- pups exhibited spontaneous seizures and paroxysmal discharge in EEG at postnatal weeks 3-4. More than 80% of the Gad2-/- rats died at postnatal days (PNDs) 17-23. GABA content in Gad2-/- brains was significantly lower than those in Gad2+/- and Gad2+/+ brains at PND17-19. These results suggest that the low levels of brain GABA content in Gad2-/- rats may lead to epilepsy followed by premature death, and that Gad2-/- rats are more severely affected than Gad2-/- mice. Considering that the GAD65/GAD67 ratio in human brains is more similar to that in rat brains than in mouse brains, Gad2-/- rats would be useful for further investigating the roles of GAD65 in vivo.


Asunto(s)
Epilepsia/genética , Glutamato Descarboxilasa/genética , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Epilepsia/metabolismo , Glutamato Descarboxilasa/deficiencia , Glutamato Descarboxilasa/metabolismo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Ratas Long-Evans , Receptores de GABA/metabolismo , Potenciales Sinápticos , Ácido gamma-Aminobutírico/metabolismo
4.
Cerebellum ; 21(6): 905-919, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34676525

RESUMEN

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system, synthesized by two isoforms of glutamate decarboxylase (GAD): GAD65 and GAD67. GABA may act as a trophic factor during brain development, but its contribution to the development and maturation of cerebellar neural circuits is not known. To understand the roles of GABA in cerebellar organization and associated functions in motor coordination and balance, we examined GAD65 conventional knock out (KO) mice and mice in which GAD67 was eliminated in parvalbumin-expressing neurons (PV-Cre; GAD67flox/flox mice). We found aberrant subcellular localization of the Shaker-type K channel Kv1.1 in basket cell collaterals of PV-Cre; GAD67 flox/flox mice and abnormal projections from basket cells to Purkinje cells in both mouse strains. We also found that altered synaptic properties of basket cell terminals to Purkinje cells in PV-Cre; GAD67flox/flox mice. Furthermore, PV-Cre; GAD67 flox/flox mice exhibited abnormal motor coordination in the rotarod test. These results indicate that GABA signaling in the cerebellum is critical for establishing appropriate connections between basket cells and Purkinje cells and is associated with motor coordination in mice.


Asunto(s)
Glutamato Descarboxilasa , Células de Purkinje , Animales , Ratones , Glutamato Descarboxilasa/genética , Células de Purkinje/metabolismo , Parvalbúminas/metabolismo , Ácido gamma-Aminobutírico , Cerebelo/metabolismo , Ratones Noqueados
5.
Proc Natl Acad Sci U S A ; 116(51): 25958-25967, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31796600

RESUMEN

Psychostimulant use is an ever-increasing socioeconomic burden, including a dramatic rise during pregnancy. Nevertheless, brain-wide effects of psychostimulant exposure are incompletely understood. Here, we performed Fos-CreERT2-based activity mapping, correlated for pregnant mouse dams and their fetuses with amphetamine, nicotine, and caffeine applied acutely during midgestation. While light-sheet microscopy-assisted intact tissue imaging revealed drug- and age-specific neuronal activation, the indusium griseum (IG) appeared indiscriminately affected. By using GAD67gfp/+ mice we subdivided the IG into a dorsolateral domain populated by γ-aminobutyric acidergic interneurons and a ventromedial segment containing glutamatergic neurons, many showing drug-induced activation and sequentially expressing Pou3f3/Brn1 and secretagogin (Scgn) during differentiation. We then combined Patch-seq and circuit mapping to show that the ventromedial IG is a quasi-continuum of glutamatergic neurons (IG-Vglut1+) reminiscent of dentate granule cells in both rodents and humans, whose dendrites emanate perpendicularly toward while their axons course parallel with the superior longitudinal fissure. IG-Vglut1+ neurons receive VGLUT1+ and VGLUT2+ excitatory afferents that topologically segregate along their somatodendritic axis. In turn, their efferents terminate in the olfactory bulb, thus being integral to a multisynaptic circuit that could feed information antiparallel to the olfactory-cortical pathway. In IG-Vglut1+ neurons, prenatal psychostimulant exposure delayed the onset of Scgn expression. Genetic ablation of Scgn was then found to sensitize adult mice toward methamphetamine-induced epilepsy. Overall, our study identifies brain-wide targets of the most common psychostimulants, among which Scgn+/Vglut1+ neurons of the IG link limbic and olfactory circuits.


Asunto(s)
Mapeo Encefálico , Encéfalo/metabolismo , Regulación de la Expresión Génica , Lóbulo Límbico/metabolismo , Animales , Axones/metabolismo , Encéfalo/diagnóstico por imagen , Dendritas/metabolismo , Femenino , Glutamato Descarboxilasa/genética , Humanos , Interneuronas/metabolismo , Lóbulo Límbico/anatomía & histología , Lóbulo Límbico/efectos de los fármacos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Bulbo Olfatorio/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Secretagoginas/genética , Secretagoginas/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Ácido gamma-Aminobutírico/metabolismo
6.
Pflugers Arch ; 473(12): 1911-1924, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34724104

RESUMEN

The nucleus accumbens (NAc) receives cortical projections principally from the insular cortex (IC) and medial prefrontal cortex (mPFC). Among NAc neurons, cholinergic interneurons (ChNs) regulate the activities of medium spiny neurons (MSNs), which make up ~ 95% of NAc neurons, by modulating their firing and synaptic properties. However, little is known about the synaptic mechanisms, including their cell-type-dependent corticoaccumbal projection properties and cholinergic effects on the NAc core. Here, we performed whole-cell patch-clamp recordings from NAc MSNs and ChNs in acute brain slice preparations obtained from rats that received an AAV5-hSyn-ChR2(H134R)-mCherry injection into the IC or mPFC. Light stimulation of IC or mPFC axons induced comparable phase-locked excitatory postsynaptic currents (EPSCs) in MSNs. On the other hand, ChNs showed consistent EPSCs evoked by light stimulation of mPFC axons, whereas light stimulation of IC axons evoked much smaller EPSCs, which often showed failure in ChNs. Light-evoked EPSCs were abolished by tetrodotoxin and were recovered by 4-aminopyridine, suggesting that corticoaccumbal projections monosynaptically induce EPSCs in MSNs and ChNs. Carbachol effectively suppressed the amplitude of EPSCs in MSNs and ChNs evoked by light stimulation of IC or mPFC axons and in ChNs evoked by stimulating mPFC axons. The carbachol-induced suppression was recovered by atropine or pirenzepine, while preapplication of gallamine, J104129, PD102807, or AF-DX384 did not block the carbachol-induced EPSC suppression. These results suggest that NAc MSNs and ChNs are differentially regulated by excitatory projections from the IC and mPFC and that these corticoaccumbal excitatory inputs are modulated by M1 receptor activation.


Asunto(s)
Neuronas Colinérgicas/metabolismo , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Acetilcolina/farmacología , Animales , Animales Modificados Genéticamente/metabolismo , Carbacol/farmacología , Colinérgicos/metabolismo , Neuronas Colinérgicas/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Ácido Glutámico/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Masculino , Núcleo Accumbens/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Corteza Prefrontal/efectos de los fármacos , Ratas , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
7.
J Neurochem ; 158(2): 153-168, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33704788

RESUMEN

γ-Aminobutyric acid (GABA) is thought to play a paracrine role in adrenal medullary chromaffin (AMC) cells. Comparative physiological and immunocytochemical approaches were used to address the issue of how the paracrine function of GABA in AMC cells is established. GABAA receptor Cl- channel activities in AMC cells of rats and mice, where corticosterone is the major glucocorticoid, were much smaller than those in AMC cells of guinea-pigs and cattle, where cortisol is the major. The extent of enhancement of GABAA receptor α3 subunit expression in rat pheochromocytoma (PC12) cells by cortisol was larger than that by corticosterone in parallel with their glucocorticoid activities. Thus, the species difference in GABAA receptor expression may be ascribed to a difference in glucocorticoid activity between corticosterone and cortisol. GABAA receptor Cl- channel activity in mouse AMC cells was enhanced by allopregnanolone, as noted with that in guinea-pig AMC cells, and the enzymes involved in allopregnanolone production were immunohistochemically detected in the zona fasciculata in both mice and guinea pigs. The expression of glutamic acid decarboxylase 67 (GAD67), one of the GABA synthesizing enzymes, increased after birth, whereas GABAA receptors already developed at birth. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, but not nicotinic or muscarinic receptors, in PC12 cells, resulted in an increase in GAD67 expression in a protein-kinase A-dependent manner. The results indicate that glucocorticoid and PACAP are mainly responsible for the expressions of GABAA receptors and GAD67 involved in GABA signaling in AMC cells, respectively.


Asunto(s)
Médula Suprarrenal/fisiología , Células Cromafines/fisiología , Comunicación Paracrina/fisiología , Ácido gamma-Aminobutírico/fisiología , Médula Suprarrenal/citología , Animales , Bovinos , Canales de Cloruro/metabolismo , Cricetinae , Glutamato Descarboxilasa/metabolismo , Cobayas , Hidrocortisona/metabolismo , Inmunohistoquímica , Masculino , Mesocricetus , Ratones , Ratones Endogámicos C57BL , Células PC12 , Pregnanolona/farmacología , Ratas , Receptores de GABA-A/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/efectos de los fármacos , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo
8.
J Neurosci Res ; 99(3): 898-913, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33271631

RESUMEN

Endocannabinoids (eCBs) act as ubiquitous modulators of synaptic transmission via the activation of cannabinoid receptors (CBRs). Cerebellar Purkinje cells (PCs) make strong inhibitory synaptic contacts not only with neurons in the deep cerebellar nuclei (DCN) but also with Lugaro cells and globular cells, whose cell bodies are located underneath the PC layer. However, little is known about the modulatory actions of eCBs on GABA release from PC axon terminals. Here, we examined the effects of eCBs on the GABAergic transmission at PC-globular cell synapses and PC-large DCN neuron synapses electrophysiologically using mouse cerebellar slices. We showed that the types 1 and 2 CBR agonist WIN55212 did not affect either spontaneous or miniature inhibitory postsynaptic currents (IPSCs) in globular cells under control conditions and in a state of enhanced synaptic activity. By contrast, another Gi/o protein-coupled receptor agonist, baclofen, significantly reduced the miniature IPSC frequency in globular cells. WIN55212 had no effects on IPSCs in large DCN neurons. A type 2 CBR agonist, HU308, also had no effects on IPSCs in either globular cells or large DCN neurons. Moreover, the PCs' target neurons did not elicit depolarization-induced suppression of inhibition. These results suggest the lack of a functional role of CBRs at PCs' axon terminals. This is in sharp contrast to the fact that PCs receive abundant excitatory and inhibitory inputs that are under eCB-mediated presynaptic inhibitory modulation. The actions of eCBs are selective to distinct synapses and possibly contribute to information processes and rigorous signal transmission in the cerebellum.


Asunto(s)
Cerebelo/fisiología , Endocannabinoides/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Baclofeno/farmacología , Benzoxazinas/farmacología , Cannabinoides/farmacología , Cerebelo/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfolinas/farmacología , Naftalenos/farmacología , Inhibición Neural , Terminales Presinápticos/metabolismo
9.
Mol Psychiatry ; 25(1): 22-36, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31735910

RESUMEN

The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.


Asunto(s)
Encéfalo/efectos de los fármacos , Dieta Occidental/efectos adversos , Epigénesis Genética/efectos de los fármacos , Animales , Ansiedad , Encéfalo/metabolismo , Metilación de ADN/efectos de los fármacos , Depresión , Dieta , Suplementos Dietéticos , Endocannabinoides/metabolismo , Epigénesis Genética/genética , Epigenómica/métodos , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/metabolismo , Embarazo , Receptor Cannabinoide CB1/efectos de los fármacos
10.
Adv Exp Med Biol ; 1293: 471-479, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33398834

RESUMEN

To elucidate the expression mechanisms of brain functions, we have developed an ultrathin fluorescence endoscope imaging system (U-FEIS) that can image cells in the brain at any depth while minimizing the invasion. The endoscope part of U-FEIS consists of a GRIN lens and a 10,000-pixel image fiber with a diameter of 450 µm. The specialized microscope of U-FEIS is within 30 cm square and includes lenses and optical filters optimized for the endoscope. Using U-FEIS, we successfully visualized neurons expressing GFP with single-cell resolution and recorded the multineuronal activities in vitro and in vivo. U-FEIS can also perform imaging and optical stimulation simultaneously. Therefore, U-FEIS should be a powerful optical tool in neuroscience research.


Asunto(s)
Endoscopios , Lentes , Encéfalo/diagnóstico por imagen , Neuroimagen Funcional , Microscopía
11.
Lab Invest ; 100(2): 274-284, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31641226

RESUMEN

Physiological brain temperature is an important determinant of brain function, and it is well established that changes in brain temperature dynamically influence hippocampal neuronal activity. We previously demonstrated that the thermosensor TRPV4 is activated at physiological brain temperature in hippocampal neurons thereby controlling neuronal excitability in vitro. Here, we examined whether TRPV4 regulates neuronal excitability through its activation by brain temperature in vivo. We locally cooled the hippocampus using our novel electrical device and demonstrated constitutive TRPV4 activation in normal mouse brain. We generated a model of partial epilepsy by utilizing kindling stimuli in the ventral hippocampus of wild type (WT) or TRPV4-deficient (TRPV4KO) mice and obtained electroencephalograms (EEG). The frequencies of epileptic EEG in WT mice were significantly larger than those in TRPV4KO mice. These results indicate that TRPV4 activation is involved in disease progression of epilepsy. We expected that disease progression would enhance hyperexcitability and lead to hyperthermia in the epileptogenic foci. To confirm this hypothesis, we developed a new device to measure exact brain temperature only in a restricted local area. From the recording results by the new device, we found that the brain temperatures in epileptogenic zones were dramatically elevated compared with normal regions. Furthermore, we demonstrated that the temperature elevation was critical for disease progression. Based on these results, we speculate that brain cooling treatment at epileptogenic foci would effectively suppress epileptic discharges through inhibition of TRPV4. Notably, the cooling treatment drastically suppressed neuronal discharges dependent on the inactivation of TRPV4.


Asunto(s)
Temperatura Corporal/fisiología , Epilepsia , Fiebre , Canales Catiónicos TRPV , Animales , Giro Dentado/metabolismo , Giro Dentado/fisiopatología , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia/metabolismo , Epilepsia/fisiopatología , Fiebre/metabolismo , Fiebre/fisiopatología , Masculino , Ratones , Ratones Noqueados , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
12.
Genes Cells ; 24(1): 41-59, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30422377

RESUMEN

The layer structure has been intensively characterized in the developing neocortex and cerebellum based on the various molecular markers. However, as to the developing dorsal midbrain, comprehensive analyses have not been intensely carried out, and thus, the name as well as the definition of each layer is not commonly shared. Here, we redefined the three layers, such as the ventricular zone, intermediate zone and marginal zone, based on various markers for proliferation and differentiation in embryonic dorsal midbrain. Biphasic Ki67 expression defines the classical VZ, in which there is clear separation of the mitotic and interphase zones. Next, we mapped the distribution of immature neurons to the defined layers, based on markers for glutamatergic and GABAergic lineage. Interestingly, Tbr2 and Neurog2 were expressed in the postmitotic neurons. We also report that active (phosphorylated) JNK is a useful marker to demarcate layers during the embryonic stage. Finally, we validated the final arrival layers of the migratory glutamatergic and GABAergic neurons. These results form a foundation for analyses of brain development, especially in the proliferation and migration of excitatory and inhibitory neurons in the dorsal midbrain.


Asunto(s)
Desarrollo Embrionario , Mesencéfalo/citología , Mesencéfalo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Proliferación Celular , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones Endogámicos ICR , Mitosis , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/metabolismo
13.
Brain Behav Immun ; 87: 831-839, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32217081

RESUMEN

The prevalence of depression in later life is higher in women than in men. However, the sex difference in the pathophysiology of depression in elderly patients is not fully understood. Here, we performed gene expression profiling in leukocytes of middle-aged and elderly patients with major depressive disorder, termed later-life depression (LLD) in this context, and we characterized the sex-dependent pathophysiology of LLD. A microarray dataset obtained from leukocytes of patients (aged ≥50 years) with LLD (32 males and 39 females) and age-matched healthy individuals (20 males and 24 females) was used. Differentially expressed probes were determined by comparing the expression levels between patients and healthy individuals, and then functional annotation analyses (Ingenuity Pathway Analysis, Reactome pathway analysis, and cell-type enrichment analysis) were performed. A total of 1656 probes were differentially expressed in LLD females, but only 3 genes were differentially expressed in LLD males. The differentially expressed genes in LLD females were relevant to leukocyte extravasation signaling, Tec kinase signaling and the innate immune response. The upregulated genes were relevant to myeloid lineage cells such as CD14+ monocytes. In contrast, the downregulated genes were relevant to CD4+ and CD8+ T cells. Remarkable innate immune signatures are present in the leukocytes of LLD females but not males. Because inflammation is involved in the pathophysiology of depression, the altered inflammatory activity may be involved in the pathophysiology of LLD in women. In contrast, abnormal inflammation may be an uncommon feature in LLD males.


Asunto(s)
Trastorno Depresivo Mayor , Anciano , Linfocitos T CD8-positivos , Trastorno Depresivo Mayor/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Masculino , Análisis por Micromatrices , Persona de Mediana Edad
14.
Horm Behav ; 119: 104637, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31783026

RESUMEN

Phytoestrogens comprise biologically active constituents of human and animal diet that can impact on systemic and local estrogen functions in the brain. Here we report on the importance of dietary phytoestrogens for maintaining activity in a brain circuit controlling aggressive and social behavior of male mice. After six weeks of low-phytoestrogen chronic diet (diadzein plus genistein <20 µg/g) a reduction of intermale aggression and altered territorial marking behavior could be observed, compared to littermates on a standard soy-bean based diet (300 µg/g). Further, mice on low-phyto diet displayed a decrease in sociability and a reduced preference for social odors, indicating a general disturbance of social behavior. Underlying circuits were investigated by analysing the induction of the activity marker c-Fos upon social encounter. Low-phyto diet led to a markedly reduced c-Fos induction in the medial as well as the cortical amygdala, the lateral septum, medial preoptic area and bed nucleus of the stria terminalis. No difference between groups was observed in the olfactory bulb. Together our data suggest that dietary phytoestrogens critically modulate social behavior circuits in the male mouse brain.


Asunto(s)
Agresión/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Fitoquímicos/farmacología , Fitoestrógenos/farmacología , Conducta Social , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Complejo Nuclear Corticomedial/citología , Complejo Nuclear Corticomedial/efectos de los fármacos , Complejo Nuclear Corticomedial/metabolismo , Dieta , Isoflavonas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/fisiología , Área Preóptica/citología , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Territorialidad
15.
Int J Mol Sci ; 21(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106593

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a major neuronal growth factor that is widely expressed in the central nervous system. It is synthesized as a glycosylated precursor protein, (pro)BDNF and post-translationally converted to the mature form, (m)BDNF. BDNF is known to be produced and secreted by cortical glutamatergic principal cells (PCs); however, it remains a question whether it can also be synthesized by other neuron types, in particular, GABAergic interneurons (INs). Therefore, we utilized immunocytochemical labeling and reverse transcription quantitative PCR (RT-qPCR) to investigate the cellular distribution of proBDNF and its RNA in glutamatergic and GABAergic neurons of the mouse cortex. Immunofluorescence labeling revealed that mBDNF, as well as proBDNF, localized to both the neuronal populations in the hippocampus. The precursor proBDNF protein showed a perinuclear distribution pattern, overlapping with the rough endoplasmic reticulum (ER), the site of protein synthesis. RT-qPCR of samples obtained using laser capture microdissection (LCM) or fluorescence-activated cell sorting (FACS) of hippocampal and cortical neurons further demonstrated the abundance of BDNF transcripts in both glutamatergic and GABAergic cells. Thus, our data provide compelling evidence that BDNF can be synthesized by both principal cells and INs of the cortex.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Corteza Cerebral/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Masculino , Ratones
16.
J Neurosci ; 38(28): 6366-6378, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29915137

RESUMEN

The hypothalamus plays an important role in the regulation of sleep/wakefulness states. While the ventrolateral preoptic nucleus (VLPO) plays a critical role in the initiation and maintenance of sleep, the lateral posterior part of the hypothalamus contains neuronal populations implicated in maintenance of arousal, including orexin-producing neurons (orexin neurons) in the lateral hypothalamic area (LHA) and histaminergic neurons in the tuberomammillary nucleus (TMN). During a search for neurons that make direct synaptic contact with histidine decarboxylase-positive (HDC+), histaminergic neurons (HDC neurons) in the TMN and orexin neurons in the LHA of male mice, we found that these arousal-related neurons are heavily innervated by GABAergic neurons in the preoptic area including the VLPO. We further characterized GABAergic neurons electrophysiologically in the VLPO (GABAVLPO neurons) that make direct synaptic contact with these hypothalamic arousal-related neurons. These neurons (GABAVLPO→HDC or GABAVLPO→orexin neurons) were both potently inhibited by noradrenaline and serotonin, showing typical electrophysiological characteristics of sleep-promoting neurons in the VLPO. This work provides direct evidence of monosynaptic connectivity between GABAVLPO neurons and hypothalamic arousal neurons and identifies the effects of monoamines on these neuronal pathways.SIGNIFICANCE STATEMENT Rabies-virus-mediated tracing of input neurons of two hypothalamic arousal-related neuron populations, histaminergic and orexinergic neurons, showed that they receive similar distributions of input neurons in a variety of brain areas, with rich innervation by GABAergic neurons in the preoptic area, including the ventrolateral preoptic area (VLPO), a region known to play an important role in the initiation and maintenance of sleep. Electrophysiological experiments found that GABAergic neurons in the VLPO (GABAVLPO neurons) that make direct input to orexin or histaminergic neurons are potently inhibited by noradrenaline and serotonin, suggesting that these monoamines disinhibit histamine and orexin neurons. This work demonstrated functional and structural interactions between GABAVLPO neurons and hypothalamic arousal-related neurons.


Asunto(s)
Nivel de Alerta/fisiología , Neuronas GABAérgicas/fisiología , Área Hipotalámica Lateral/fisiología , Área Preóptica/fisiología , Sueño/fisiología , Animales , Neuronas GABAérgicas/citología , Área Hipotalámica Lateral/citología , Masculino , Ratones , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Norepinefrina/metabolismo , Área Preóptica/citología , Serotonina/metabolismo
17.
J Neurosci ; 38(27): 6130-6144, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29858484

RESUMEN

Perineuronal nets (PNNs), composed mainly of chondroitin sulfate proteoglycans, are the extracellular matrix that surrounds cell bodies, proximal dendrites, and axon initial segments of adult CNS neurons. PNNs are known to regulate neuronal plasticity, although their physiological roles in cerebellar functions have yet to be elucidated. Here, we investigated the contribution of PNNs to GABAergic transmission from cerebellar Purkinje cells (PCs) to large glutamatergic neurons in the deep cerebellar nuclei (DCN) in male mice by recording IPSCs from cerebellar slices, in which PNNs were depleted with chondroitinase ABC (ChABC). We found that PNN depletion increased the amplitude of evoked IPSCs and enhanced the paired-pulse depression. ChABC treatment also facilitated spontaneous IPSCs and increased the miniature IPSC frequency without changing not only the amplitude but also the density of PC terminals, suggesting that PNN depletion enhances presynaptic GABA release. We also demonstrated that the enhanced GABAergic transmission facilitated rebound firing in large glutamatergic DCN neurons, which is expected to result in the efficient induction of synaptic plasticity at synapses onto DCN neurons. Furthermore, we tested whether PNN depletion affects cerebellar motor learning. Mice having received the enzyme into the interpositus nuclei, which are responsible for delay eyeblink conditioning, exhibited the conditioned response at a significantly higher rate than control mice. Therefore, our results suggest that PNNs of the DCN suppress GABAergic transmission between PCs and large glutamatergic DCN neurons and restrict synaptic plasticity associated with motor learning in the adult cerebellum.SIGNIFICANCE STATEMENT Perineuronal nets (PNNs) are one of the extracellular matrices of adult CNS neurons and implicated in regulating various brain functions. Here we found that enzymatic PNN depletion in the mouse deep cerebellar nuclei (DCN) reduced the paired-pulse ratio of IPSCs and increased the miniature IPSC frequency without changing the amplitude, suggesting that PNN depletion enhances GABA release from the presynaptic Purkinje cell (PC) terminals. Mice having received the enzyme in the interpositus nuclei exhibited a higher conditioned response rate in delay eyeblink conditioning than control mice. These results suggest that PNNs regulate presynaptic functions of PC terminals in the DCN and functional plasticity of synapses on DCN neurons, which influences the flexibility of adult cerebellar functions.


Asunto(s)
Núcleos Cerebelosos/fisiología , Matriz Extracelular/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Transmisión Sináptica/fisiología , Animales , Parpadeo/fisiología , Condicionamiento Clásico/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Aprendizaje/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL
18.
J Neurosci ; 38(49): 10411-10423, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30341178

RESUMEN

Polyunsaturated fatty acids (PUFAs) are essential for brain development and function. Increasing evidence has shown that an imbalance of PUFAs is associated with various human psychiatric disorders, including autism and schizophrenia. Fatty acid-binding proteins (FABPs), cellular chaperones of PUFAs, are involved in PUFA intracellular trafficking, signal transduction, and gene transcription. In this study, we show that FABP3 is strongly expressed in the GABAergic inhibitory interneurons of the male mouse anterior cingulate cortex (ACC), which is a component of the limbic cortex and is important for the coordination of cognitive and emotional behaviors. Interestingly, Fabp3 KO male mice show an increase in the expression of the gene encoding the GABA-synthesizing enzyme glutamic acid decarboxylase 67 (Gad67) in the ACC. In the ACC of Fabp3 KO mice, Gad67 promoter methylation and the binding of methyl-CpG binding protein 2 (MeCP2) and histone deacetylase 1 (HDAC1) to the Gad67 promoter are significantly decreased compared with those in WT mice. The abnormal cognitive and emotional behaviors of Fabp3 KO mice are restored by methionine administration. Notably, methionine administration normalizes Gad67 promoter methylation and its mRNA expression in the ACC of Fabp3 KO mice. These findings demonstrate that FABP3 is involved in the control of DNA methylation of the Gad67 promoter and activation of GABAergic neurons in the ACC, thus suggesting the importance of PUFA homeostasis in the ACC for cognitive and emotional behaviors.SIGNIFICANCE STATEMENT The ACC is important for emotional and cognitive processing. However, the mechanisms underlying its involvement in the control of behavioral responses are largely unknown. We show the following new observations: (1) FABP3, a PUFA cellular chaperone, is exclusively expressed in GABAergic interneurons in the ACC; (2) an increase in Gad67 expression is detected in the ACC of Fabp3 KO mice; (3) the Gad67 promoter is hypomethylated and the binding of transcriptional repressor complexes is decreased in the ACC of Fabp3 KO mice; and (4) elevated Gad67 expression and abnormal behaviors seen in Fabp3 KO mice are mostly recovered by methionine treatment. These suggest that FABP3 regulates GABA synthesis through transcriptional regulation of Gad67 in the ACC.


Asunto(s)
Metilación de ADN/fisiología , Proteína 3 de Unión a Ácidos Grasos/biosíntesis , Glutamato Descarboxilasa/metabolismo , Giro del Cíngulo/metabolismo , Regiones Promotoras Genéticas/fisiología , Animales , Línea Celular Tumoral , Proteína 3 de Unión a Ácidos Grasos/genética , Glutamato Descarboxilasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos
19.
J Neurosci ; 38(19): 4598-4609, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29661967

RESUMEN

In the rodent olfactory system, neuroblasts produced in the ventricular-subventricular zone of the postnatal brain migrate tangentially in chain-like cell aggregates toward the olfactory bulb (OB) through the rostral migratory stream (RMS). After reaching the OB, the chains are dissociated and the neuroblasts migrate individually and radially toward their final destination. The cellular and molecular mechanisms controlling cell-cell adhesion during this detachment remain unclear. Here we report that Fyn, a nonreceptor tyrosine kinase, regulates the detachment of neuroblasts from chains in the male and female mouse OB. By performing chemical screening and in vivo loss-of-function and gain-of-function experiments, we found that Fyn promotes somal disengagement from the chains and is involved in neuronal migration from the RMS into the granule cell layer of the OB. Fyn knockdown or Dab1 (disabled-1) deficiency caused p120-catenin to accumulate and adherens junction-like structures to be sustained at the contact sites between neuroblasts. Moreover, a Fyn and N-cadherin double-knockdown experiment indicated that Fyn regulates the N-cadherin-mediated cell adhesion between neuroblasts. These results suggest that the Fyn-mediated control of cell-cell adhesion is critical for the detachment of chain-forming neuroblasts in the postnatal OB.SIGNIFICANCE STATEMENT In the postnatal brain, newly born neurons (neuroblasts) migrate in chain-like cell aggregates toward their destination, where they are dissociated into individual cells and mature. The cellular and molecular mechanisms controlling the detachment of neuroblasts from chains are not understood. Here we show that Fyn, a nonreceptor tyrosine kinase, promotes the somal detachment of neuroblasts from chains, and that this regulation is critical for the efficient migration of neuroblasts to their destination. We further show that Fyn and Dab1 (disabled-1) decrease the cell-cell adhesion between chain-forming neuroblasts, which involves adherens junction-like structures. Our results suggest that Fyn-mediated regulation of the cell-cell adhesion of neuroblasts is critical for their detachment from chains in the postnatal brain.


Asunto(s)
Encéfalo/fisiología , Células-Madre Neurales/fisiología , Proteínas Proto-Oncogénicas c-fyn/fisiología , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Cadherinas/genética , Cateninas/metabolismo , Adhesión Celular/fisiología , Movimiento Celular/genética , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/fisiología
20.
Eur J Neurosci ; 50(6): 2970-2987, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31012509

RESUMEN

Feedback regulation from the higher association areas is thought to control the primary sensory cortex, contribute to the cortical processing of sensory information, and work for higher cognitive functions such as multimodal integration and attentional control. However, little is known about the underlying neural mechanisms. Here, we show that the posterior parietal cortex (PPC) persistently inhibits the activity of the primary visual cortex (V1) in mice. Activation of the PPC causes the suppression of visual responses in V1 and induces the short-term depression, which is specific to visual stimuli. In contrast, pharmacological inactivation of the PPC or disconnection of cortical pathways from the PPC to V1 results in an effect of transient enhancement of visual responses in V1. Two-photon calcium imaging demonstrated that the cortical disconnection caused V1 excitatory neurons an enhancement of visual responses and a reduction of orientation selectivity index (OSI). These results show that the PPC regulates the response properties of V1 excitatory neurons. Our findings reveal one of the functions of the PPC, which may contribute to higher brain functions in mice.


Asunto(s)
Inhibición Neural/fisiología , Neuronas/fisiología , Lóbulo Parietal/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Animales , Atención/fisiología , Masculino , Ratones , Plasticidad Neuronal/fisiología , Estimulación Luminosa , Percepción Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA