Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Dig Dis Sci ; 68(11): 4148-4155, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37713038

RESUMEN

OBJECTIVES: Inadequate bowel preparation (BP) negatively affects the efficacy and quality of colonoscopy. Although constipation has already been reported as one of the most important predictors of inadequate BP, there is limited information on the relation between inadequate BP and bowel habits including constipation-related symptoms, medications, and severity of constipation. METHODS: This single-center, prospective observational study was conducted between August 2019 and May 2020. All participants answered questionnaires regarding personal bowel habits and received low-volume polyethylene glycol plus ascorbic acid for outpatient colonoscopy. Severity of constipation was evaluated by constipation scoring system. Bowel preparation cleansing was evaluated using Boston Bowel Preparation Scale (BBPS). Potential predictors of inadequate BP were analyzed using multivariate logistic regression models. RESULTS: Overall, 1054 patients were enrolled, of which, 105 (10%) had inadequate BP (total BBPS ≤ 6 or any segmental BBPS < 2). The risk of inadequate BP increased with constipation severity (P = 0.01). Multivariate analysis showed that frequent straining (> 25% of defecations) (OR 2.09, 95% CI: 1.33-3.28) and chronic use of stimulant laxatives (OR 2.57, 95% CI: 1.59-4.17) were significant predictors of inadequate BP, among personal bowel habits. CONCLUSION: Frequent straining and chronic use of stimulant laxatives were predictors of inadequate BP. An intensified preparation regimen should be considered for severely constipated patients with straining and chronic use of stimulant laxatives.

2.
Nano Lett ; 22(6): 2569-2577, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35226506

RESUMEN

In situ fabrication of well-defined bridging nanostructures is an interesting and unique approach to three-dimensionally design nanosensor structures, which are hardly attainable by other methods. Here, we demonstrate the significant effect of edge-topological regulation on in situ fabrication of ZnO bridging nanosensors. When employing seed layers with a sharp edge, which is a well-defined structure in conventional lithography, the bridging angles and electrical resistances between two opposing electrodes were randomly distributed. The stochastic nature of bridging growth direction at the sharp edges inherently causes such unintentional variation of structural and electrical properties. We propose an edgeless seed layer structure using a two-layers resist method to solve the above uncontrollability of bridging nanosensors. Such bridging nanosensors not only substantially improved the uniformity of structural and electrical properties between two opposing electrodes but also significantly enhanced the sensing responses for NO2 with the smaller variance and the lower limit of detection via in situ controlled electrical contacts.


Asunto(s)
Nanoestructuras , Electrodos , Nanoestructuras/química
3.
Anal Chem ; 93(44): 14708-14715, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34704450

RESUMEN

We present a method named NPFimg, which automatically identifies multivariate chemo-/biomarker features of analytes in chromatography-mass spectrometry (MS) data by combining image processing and machine learning. NPFimg processes a two-dimensional MS map (m/z vs retention time) to discriminate analytes and identify and visualize the marker features. Our approach allows us to comprehensively characterize the signals in MS data without the conventional peak picking process, which suffers from false peak detections. The feasibility of marker identification is successfully demonstrated in case studies of aroma odor and human breath on gas chromatography-mass spectrometry (GC-MS) even at the parts per billion level. Comparison with the widely used XCMS shows the excellent reliability of NPFimg, in that it has lower error rates of signal acquisition and marker identification. In addition, we show the potential applicability of NPFimg to the untargeted metabolomics of human breath. While this study shows the limited applications, NPFimg is potentially applicable to data processing in diverse metabolomics/chemometrics using GC-MS and liquid chromatography-MS. NPFimg is available as open source on GitHub (http://github.com/poomcj/NPFimg) under the MIT license.


Asunto(s)
Metabolómica , Programas Informáticos , Biomarcadores , Cromatografía Liquida , Humanos , Aprendizaje Automático , Espectrometría de Masas , Reproducibilidad de los Resultados
4.
Small ; 17(7): e2006860, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33480477

RESUMEN

2D metal phosphide loop-sheet heterostructures are controllably synthesized by edge-topological regulation, where Ni2 P nanosheets are edge-confined by the N-doped carbon loop, containing ultrafine NiFeP nanocrystals (denoted as NiFeP@NC/Ni2 P). This loop-sheet feature with lifted-edges prevents the stacking of nanosheets and induces accessible open channels for catalytic site exposure and gas bubble release. Importantly, these NiFeP@NC/Ni2 P hybrids exhibit a remarkable oxygen evolution activity with an overpotential of 223 mV at 20 mA cm-2 and a Tafel slope of 46.1 mV dec-1 , constituting the record-high performance among reported metal phosphide electrocatalysts. The NiFeP@NC/Ni2 P hybrids are also employed as both anode and cathode to achieve an alkaline electrolyzer for overall water splitting, delivering a current density of 10 mA cm-2 with a voltage of 1.57 V, comparable to that of the commercial Pt/C||RuO2 couple (1.56 V). Moreover, a photovoltaic-electrolysis coupling system can as well be effectively established for robust overall water splitting. Evidently, this ingenious protocol would expand the toolbox for designing efficient 2D nanomaterials for practical applications.

5.
Langmuir ; 37(17): 5172-5179, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33890792

RESUMEN

Click reactions (e.g., Huisgen cycloaddition) on metal oxide nanostructures offer a versatile and robust surface molecular modification for various applications because they form strong covalent bonds in a wide range of molecular substrates. This study reports a rational strategy to maximize the conversion rate of surface click reactions on single-crystalline ZnO nanowires by monitoring the reaction progress. p-Polarized multiple-angle incidence resolution spectrometry (pMAIRS) and Fourier-transformed infrared (FT-IR) spectroscopy were employed to monitor the reaction progress of an azide-terminated self-assembled monolayer (SAM) on single-crystalline ZnO nanowires. Although various reaction parameters including the concentration of Cu(I) catalysts, triazolyl ligands, solvents, and target alkynes were systematically examined for the surface click reactions, 10-30% of terminal azide on the nanowire surface remained unreacted. Temperature-dependent FT-IR measurements revealed that such unreacted residual azides deteriorate the thermal stability of the nanowire molecular layer. To overcome this observed conversion limitation of click reactions on nanostructure surfaces, we considered the steric hindrance around the closely packed SAM reaction points, then experimented with dispersing the azide moiety into a methyl-terminated SAM. The mixed-SAM method significantly improved the azide conversion rate to almost 100%. This reaction method enables the construction of spatially patterned molecular surface modifications on metal oxide nanowire arrays without detrimental unreacted azide groups.

6.
Analyst ; 146(22): 6684-6725, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34667998

RESUMEN

Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.


Asunto(s)
Nanocables , Electrónica , Reproducibilidad de los Resultados
7.
Nano Lett ; 20(1): 599-605, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31858802

RESUMEN

We demonstrate the facile, rational synthesis of monodispersedly sized zinc oxide (ZnO) nanowires from randomly sized seeds by hydrothermal growth. Uniformly shaped nanowire tips constructed in ammonia-dominated alkaline conditions serve as a foundation for the subsequent formation of the monodisperse nanowires. By precisely controlling the sharp tip formation and the nucleation, our method substantially narrows the distribution of ZnO nanowire diameters from σ = 13.5 nm down to σ = 1.3 nm and controls their diameter by a completely bottom-up method, even initiating from randomly sized seeds. The proposed concept of sharp tip based monodisperse nanowires growth can be applied to the growth of diverse metal oxide nanowires and thus paves the way for bottom-up grown metal oxide nanowires-integrated nanodevices with a reliable performance.

8.
Nano Lett ; 19(12): 8510-8518, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31525986

RESUMEN

We control the formation of Bi-induced nanostructures on the growth of GaAs/GaAsBi core-shell nanowires (NWs). Bi serves as not only a constituent but also a surfactant and nanowire growth catalyst. Thus, we paved a way to achieve unexplored III-V nanostructures employing the characteristic supersaturation of catalyst droplets, structural modifications induced by strain, and incorporation into the host GaAs matrix correlated with crystalline defects and orientations. When Ga is deficient during growth, Bi accumulates on the vertex of core GaAs NWs and serves as a nanowire growth catalyst for the branched structures to azimuthal <112>. We find a strong correlation between Bi accumulation and stacking faults. Furthermore, Bi is preferentially incorporated on the GaAs (112)B surface, leading to spatially selective Bi incorporation into a confined area that has a Bi concentration of over 7%. The obtained GaAs/GaAsBi/GaAs heterostructure with an interface defined by the crystalline twin defects in a zinc-blende structure can be potentially applied to a quantum confined structure. Our finding provides a rational design concept for the creation of GaAsBi based nanostructures and the control of Bi incorporation beyond the fundamental limit.

9.
Nano Lett ; 19(3): 1675-1681, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30827116

RESUMEN

In general, the electrical conductivities of n-type semiconducting metal oxide nanostructures increase with the decrease in the oxygen partial pressure during crystal growth owing to the increased number of crystal imperfections including oxygen vacancies. In this paper, we report an unusual oxygen partial pressure dependence of the electrical conductivity of single-crystalline SnO2 nanowires grown by a vapor-liquid-solid (VLS) process. The electrical conductivity of a single SnO2 nanowire, measured using the four-probe method, substantially decreases by 2 orders of magnitude when the oxygen partial pressure for the crystal growth is reduced from 10-3 to 10-4 Pa. This contradicts the conventional trend of n-type SnO2 semiconductors. Spatially resolved single-nanowire electrical transport measurements, microstructure analysis, plane-view electron energy-loss spectroscopy, and molecular dynamics simulations reveal that the observed unusual oxygen partial pressure dependence of the electrical transport is attributed to the intrinsic differences between the two crystal growth interfaces (LS and VS interfaces) in the critical nucleation of the crystal growth and impurity incorporation probability as a function of the oxygen partial pressure. The impurity incorporation probability at the LS interface is always lower than that at the VS interface, even under reduced oxygen partial pressures.

10.
Nano Lett ; 19(4): 2443-2449, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30888179

RESUMEN

Metal-oxide nanowires have demonstrated excellent capability in the electrical detection of various molecules based on their material robustness in liquid and air environments. Although the surface structure of the nanowires essentially determines their interaction with adsorbed molecules, understanding the correlation between an oxide nanowire surface and an adsorbed molecule is still a major challenge. Herein, we propose a rational methodology to obtain this information for low-density molecules adsorbed on metal oxide nanowire surfaces by employing infrared p-polarized multiple-angle incidence resolution spectroscopy and temperature-programmed desorption/gas chromatography-mass spectrometry. As a model system, we studied the surface chemical transformation of an aldehyde (nonanal, a cancer biomarker in breath) on single-crystalline ZnO nanowires. We found that a slight surface reconstruction, induced by the thermal pretreatment, determines the surface chemical reactivity of nonanal. The present results show that the observed surface reaction trend can be interpreted in terms of the density of Zn ions exposed on the nanowire surface and of their corresponding spatial arrangement on the surface, which promotes the reaction between neighboring adsorbed molecules. The proposed methodology will support a better understanding of complex molecular transformations on various nanostructured metal-oxide surfaces.

11.
Nano Lett ; 17(8): 4698-4705, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28671477

RESUMEN

Single crystalline nanowires composed of semiconducting metal oxides formed via a vapor-liquid-solid (VLS) process exhibit an electrical conductivity even without an intentional carrier doping, although these stoichiometric metal oxides are ideally insulators. Suppressing this unintentional doping effect has been a challenging issue not only for metal oxide nanowires but also for various nanostructured metal oxides toward their semiconductor applications. Here we demonstrate that a pure VLS crystal growth, which occurs only at liquid-solid (LS) interface, substantially suppresses an unintentional doping of single crystalline SnO2 nanowires. By strictly tailoring the crystal growth interface of VLS process, we found the gigantic difference of electrical conduction (up to 7 orders of magnitude) between nanowires formed only at LS interface and those formed at both LS and vapor-solid (VS) interfaces. On the basis of investigations with spatially resolved single nanowire electrical measurements, plane-view electron energy-loss spectroscopy, and molecular dynamics simulations, we reveal the gigantic suppression of unintentional carrier doping only for the crystal grown at LS interface due to the higher annealing effect at LS interface compared with that grown at VS interface. These implications will be a foundation to design the semiconducting properties of various nanostructured metal oxides.

12.
J Am Chem Soc ; 139(40): 14137-14142, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28880545

RESUMEN

Measuring ionic currents passing through nano- or micropores has shown great promise for the electrical discrimination of various biomolecules, cells, bacteria, and viruses. However, conventional measurements have shown there is an inherent limitation to the detectable particle volume (1% of the pore volume), which critically hinders applications to real mixtures of biomolecule samples with a wide size range of suspended particles. Here we propose a rational methodology that can detect samples with the detectable particle volume of 0.01% of the pore volume by measuring a transient current generated from the potential differences in a microfluidic bridge circuit. Our method substantially suppresses the background ionic current from the µA level to the pA level, which essentially lowers the detectable particle volume limit even for relatively large pore structures. Indeed, utilizing a microscale long pore structure (volume of 5.6 × 104 aL; height and width of 2.0 × 2.0 µm; length of 14 µm), we successfully detected various samples including polystyrene nanoparticles (volume: 4 aL), bacteria, cancer cells, and DNA molecules. Our method will expand the applicability of ionic current sensing systems for various mixed biomolecule samples with a wide size range, which have been difficult to measure by previously existing pore technologies.

13.
Nano Lett ; 16(12): 7495-7502, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960479

RESUMEN

Vapor-liquid-solid (VLS) growth process of single crystalline metal oxide nanowires has proven the excellent ability to tailor the nanostructures. However, the VLS process of metal oxides in general requires relatively high growth temperatures, which essentially limits the application range. Here we propose a rational concept to reduce the growth temperature in VLS growth process of various metal oxide nanowires. Molecular dynamics (MD) simulation theoretically predicts that it is possible to reduce the growth temperature in VLS process of metal oxide nanowires by precisely controlling the vapor flux. This concept is based on the temperature dependent "material flux window" that the appropriate vapor flux for VLS process of nanowire growth decreases with decreasing the growth temperature. Experimentally, we found the applicability of this concept for reducing the growth temperature of VLS processes for various metal oxides including MgO, SnO2, and ZnO. In addition, we show the successful applications of this concept to VLS nanowire growths of metal oxides onto tin-doped indium oxide (ITO) glass and polyimide (PI) substrates, which require relatively low growth temperatures.

14.
J Am Chem Soc ; 138(32): 10088-91, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27485526

RESUMEN

A series of conductive porous composites were obtained by the polymerization of 3,4-ethylenedioxythiophene (EDOT) in the cavities of MIL-101(Cr). By controlling the amount of EDOT loaded into the host framework, it was possible to modulate the conductivity as well as the porosity of the composite. This approach yields materials with a reasonable electronic conductivity (1.1 × 10(-3) S·cm(-1)) while maintaining high porosity (SBET = 803 m(2)/g). This serves as a promising strategy for obtaining highly nanotextured conductive polymers with very high accessibility for small gas molecules, which are beneficial to the fabrication of a chemiresistive sensor for the detection of NO2.

15.
Sci Technol Adv Mater ; 17(1): 644-649, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27877910

RESUMEN

DNA methylation is a stable epigenetic modification, which is well known to be involved in gene expression regulation. In general, however, analyzing DNA methylation requires rather time consuming processes (24-96 h) via DNA replication and protein modification. Here we demonstrate a methodology to analyze DNA methylation at a single DNA molecule level without any protein modifications by measuring the contracted length and relaxation time of DNA within a nanochannel. Our methodology is based on the fact that methylation makes DNA molecules stiffer, resulting in a longer contracted length and a longer relaxation time (a slower contraction rate). The present methodology offers a promising way to identify DNA methylation without any protein modification at a single DNA molecule level within 2 h.

16.
Nano Lett ; 15(10): 6406-12, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26372675

RESUMEN

Metal oxide nanowires hold great promise for various device applications due to their unique and robust physical properties in air and/or water and also due to their abundance on Earth. Vapor-liquid-solid (VLS) growth of metal oxide nanowires offers the high controllability of their diameters and spatial positions. In addition, VLS growth has applicability to axial and/or radial heterostructures, which are not attainable by other nanowire growth methods. However, material species available for the VLS growth of metal oxide nanowires are substantially limited even though the variety of material species, which has fascinating physical properties, is the most interesting feature of metal oxides. Here we demonstrate a rational design for the VLS growth of various metal oxide nanowires, based on the "material flux window". This material flux window describes the concept of VLS nanowire growth within a limited material flux range, where nucleation preferentially occurs only at a liquid-solid interface. Although the material flux was previously thought to affect primarily the growth rate, we experimentally and theoretically demonstrate that the material flux is the important experimental variable for the VLS growth of metal oxide nanowires. On the basis of the material flux window concept, we discover novel metal oxide nanowires, composed of MnO, CaO, Sm2O3, NiO, and Eu2O3, which were previously impossible to form via the VLS route. The newly grown NiO nanowires exhibited stable memristive properties superior to conventional polycrystalline devices due to the single crystallinity. Thus, this VLS design route offers a useful guideline for the discovery of single crystalline nanowires that are composed of functional metal oxide materials.

17.
J Am Chem Soc ; 136(40): 14100-6, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25229842

RESUMEN

We demonstrate a modulation of thermoelectric power factor via a radial dopant inhomogeneity in B-doped Si nanowires. These nanowires grown via vapor-liquid-solid (VLS) method were naturally composed of a heavily doped outer shell layer and a lightly doped inner core. The thermopower measurements for a single nanowire demonstrated that the power factor values were higher than those of homogeneously B-doped Si nanowires. The field effect measurements revealed the enhancement of hole mobility for these VLS grown B-doped Si nanowires due to the modulation doping effect. This mobility enhancement increases overall electrical conductivity of nanowires without decreasing the Seebeck coefficient value, resulting in the increase of thermoelectric power factor. In addition, we found that tailoring the surface dopant distribution by introducing surface δ-doping can further increase the power factor value. Thus, intentionally tailoring radial dopant inhomogeneity promises a way to modulate the thermoelectric power factor of semiconductor nanowires.

18.
ACS Appl Mater Interfaces ; 16(23): 29570-29580, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804616

RESUMEN

Extracellular vesicles (EVs) contain a subset of proteins, lipids, and nucleic acids that maintain the characteristics of the parent cell. Immunotherapy using EVs has become a focus of research due to their unique features and bioinspired applications in cancer treatment. Unlike conventional immunotherapy using tumor fragments, EVs can be easily obtained from bodily fluids without invasive actions. We previously fabricated nanowire devices that were specialized for EV collection, but they were not suitable for cell culturing. In this study, we fabricated a ZnO/Al2O3 core-shell nanowire platform that could collect more than 60% of the EVs from the cell supernatant. Additionally, we could continue to culture dendritic cells (DCs) on the platform as an artificial lymph node to investigate cell maturation into antigen-presenting cells. Finally, using this platform, we reproduced a series of on-site immune processes that are among the pivotal immune functions of DCs and include such processes as antigen uptake, antigen presentation, and endocytosis of cancer-derived EVs. This platform provides a new ex vivo tool for EV-DC-mediated immunotherapies.


Asunto(s)
Células Dendríticas , Vesículas Extracelulares , Nanocables , Neoplasias , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Nanocables/química , Vesículas Extracelulares/química , Humanos , Neoplasias/terapia , Neoplasias/patología , Neoplasias/inmunología , Inmunoterapia , Óxido de Zinc/química , Animales , Línea Celular Tumoral , Ratones
19.
J Am Chem Soc ; 135(18): 7033-8, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23581597

RESUMEN

Highly conductive and transparent indium-tin oxide (ITO) single-crystalline nanowires, formed by the vapor-liquid-solid (VLS) method, hold great promise for various nanoscale device applications. However, increasing an electrical conductivity of VLS grown ITO nanowires is still a challenging issue due to the intrinsic difficulty in controlling complex material transports of the VLS process. Here, we demonstrate a crucial role of preferential indium nucleation on the electrical conductivity of VLS grown ITO nanowires using gold catalysts. In spite of the fact that the vapor pressure of tin is lower than that of indium, we found that the indium concentration within the nanowires was always higher than the nominal composition. The VLS growth of ITO through gold catalysts significantly differs from ITO film formations due to the emergence of preferential indium nucleation only at a liquid-solid interface. Furthermore, we demonstrate that the averaged resistivity of ITO nanowires can be decreased down to 2.1 × 10(-4) Ω cm, which is the lowest compared with values previously reported, via intentionally increasing the tin concentration within the nanowires.

20.
Nano Lett ; 12(11): 5684-90, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23039823

RESUMEN

This study demonstrates the effect of surroundings on a memristive switching at nanoscale by utilizing an open top planar-type device. NiO(x) and CoO(x) planar-type devices have exhibited a memristive behavior under atmospheric pressure, whereas TiO(2-x) planar-type devices did not show a memristive switching even under the same surroundings. A memristive behavior of TiO(2-x) planar-type devices has emerged when reducing an ambient pressure and/or employing a SiO(2) passivation layer. These results reveal that a thermodynamical interaction with surroundings critically determines the occurrence of memristive switching via varying a stability of nonstoichiometry. Since this effect tends to be more significant for smaller devices with larger specific surface area, tailoring the surrounding effect by an appropriate passivation will be essential for high density devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA