Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 297(3): 101006, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34310946

RESUMEN

Heparan sulfate (HS), a highly sulfated linear polysaccharide, is involved in diverse biological functions in various tissues. Although previous studies have suggested a possible contribution of HS to the differentiation of white adipocytes, there has been no direct evidence supporting this. Here, we inhibited the synthesis of HS chains in 3T3-L1 cells using CRISPR-Cas9 technology, resulting in impaired differentiation of adipocytes with attenuated bone morphogenetic protein 4 (BMP4)-fibroblast growth factor 1 (FGF1) signaling pathways. HS reduction resulted in reduced glucose uptake and decreased insulin-dependent intracellular signaling. We then made heterozygous mutant mice for the Ext1 gene, which encodes an enzyme essential for the HS biosynthesis, specifically in the visceral white adipose tissue (Fabp4-Cre+::Ext1flox/WT mice, hereafter called Ext1Δ/WT) to confirm the importance of HS in vivo. The expression levels of transcription factors that control adipocyte differentiation, such as peroxisome proliferator-activated receptor gamma, were reduced in Ext1Δ/WT adipocytes, which contained smaller, unilocular lipid droplets, reduced levels of enzymes involved in lipid synthesis, and altered expression of BMP4-FGF1 signaling molecules. Furthermore, we examined the impact of HS reduction in visceral white adipose tissue on systemic glucose homeostasis. We observed that Ext1Δ/WT mice showed glucose intolerance because of insulin resistance. Our results demonstrate that HS plays a crucial role in the differentiation of white adipocytes through BMP4-FGF1 signaling pathways, thereby contributing to insulin sensitivity and glucose homeostasis.


Asunto(s)
Adipocitos Blancos/citología , Diferenciación Celular/fisiología , Glucosa/metabolismo , Heparitina Sulfato/fisiología , Homeostasis , Resistencia a la Insulina , Células 3T3-L1 , Adipocitos Blancos/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Sistemas CRISPR-Cas , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Ratones , Transducción de Señal
2.
Biochem Biophys Res Commun ; 609: 141-148, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35429681

RESUMEN

Histamine is synthesised from l-histidine through the catalysis of histidine decarboxylase (HDC). In the central nervous system (CNS), histamine is exclusively produced in histaminergic neurons located in the posterior hypothalamus and controls various CNS functions. Although histidine was known as a precursor of histamine, the impact of oral histidine intake on brain histamine concentration and brain function has not been fully elucidated. In the present study, we aimed to elucidate the importance of oral histidine supplementation in the histaminergic nervous system and working memory in stressful conditions. First, we confirmed that sleep deprivation by water-floor stress in male mice increased histamine consumption and resulted in histamine reduction and impaired working memory in the Y-maze test. This memory impairment was rescued by intracerebroventricular injection of histamine and histidine, indicating that oral histidine intake could also improve memory function. Next, we examined the impact of histidine intake on brain histamine concentration and neuronal activity. Histidine intake increased extracellular histamine concentration around the prefrontal cortex (PFC) and the basal forebrain (BF), leading to a robust increase in the number of c-fos-positive cells around these areas. Finally, we investigated the beneficial effects of histidine intake on working memory. Histidine supplementation alleviated impaired memory function induced by sleep deprivation. This beneficial effect of histidine on memory was cancelled by intracerebroventricular injection of the HDC inhibitor α-fluoromethylhistidine. These results demonstrate that oral histidine intake replenishes brain histamine and leads to the recovery of impaired working memory induced by sleep deprivation through histaminergic activation.


Asunto(s)
Depresores del Sistema Nervioso Central , Histidina , Animales , Histamina , Histidina/farmacología , Histidina Descarboxilasa , Masculino , Memoria a Corto Plazo , Ratones , Neuronas , Privación de Sueño
3.
Tohoku J Exp Med ; 252(3): 199-208, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087680

RESUMEN

Ependymal cells have an essential role in regulating the dynamics of the cerebrospinal fluid flow by the movement of their multiple cilia. Impaired generation or function of cilia could cause hydrocephalus due to the disordered dynamics of the cerebrospinal fluid flow. However, molecular bases regulating differentiation of the ependymal cells and their ciliogenesis have not been fully elucidated. We report here that bone morphogenetic proteins (BMPs), growth factors orchestrating tissue architecture throughout the body, inhibit ciliogenesis during ependymal cell differentiation in primary cell culture. Previous in vitro study has reported that ectopic expression of Smad6 and Smad7 promotes differentiation of embryonic stem cells into multi-ciliated ependymal-like cells. Since Smad6 and Smad7 have been known as the intracellular inhibitory factors of the BMP signaling pathway, the activation of the pathway could cause a deficit in ciliogenesis of ependymal cells. To examine whether activation of the pathway affects ciliogenesis, we investigated the effects of two BMPs, BMP2 and BMP4, on the ependymal differentiation of the primary cultured cells prepared from the neonatal mouse brain. Supplementation of BMP2 or BMP4 in culture media significantly reduced the number of cells with multiple cilia among the total cells, while most of the cells expressed FoxJ1, a master regulator of ciliogenesis. Activation of the pathway was confirmed by the phosphorylation of intracellular Smad1/5/8, downstream factors of the BMP receptors. These in vitro results suggest that inhibition of the BMP signaling pathway might be essential for ciliogenesis during the ependymal cell differentiation in vivo.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Cilios/metabolismo , Epéndimo/citología , Animales , Proteína Morfogenética Ósea 2/biosíntesis , Proteína Morfogenética Ósea 4/biosíntesis , Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal/efectos de los fármacos , Proteína smad6/biosíntesis , Proteína smad7/biosíntesis
4.
Hum Mol Genet ; 26(23): 4715-4727, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973166

RESUMEN

Germline mutations in BRAF are a major cause of cardio-facio-cutaneous (CFC) syndrome, which is characterized by heart defects, characteristic craniofacial dysmorphology and dermatologic abnormalities. Patients with CFC syndrome also commonly show gastrointestinal dysfunction, including feeding and swallowing difficulties and gastroesophageal reflux. We have previously found that knock-in mice expressing a Braf Q241R mutation exhibit CFC syndrome-related phenotypes, such as growth retardation, craniofacial dysmorphisms, congenital heart defects and learning deficits. However, it remains unclear whether BrafQ241R/+ mice exhibit gastrointestinal dysfunction. Here, we report that BrafQ241R/+ mice have neonatal feeding difficulties and esophageal dilation. The esophagus tissues from BrafQ241R/+ mice displayed incomplete replacement of smooth muscle with skeletal muscle and decreased contraction. Furthermore, the BrafQ241R/+ mice showed hyperkeratosis and a thickened muscle layer in the forestomach. Treatment with MEK inhibitors ameliorated the growth retardation, esophageal dilation, hyperkeratosis and thickened muscle layer in the forestomach in BrafQ241R/+ mice. The esophageal dilation with aberrant skeletal-smooth muscle boundary in BrafQ241R/+ mice were recovered after treatment with the histone H3K27 demethylase inhibitor GSK-J4. Our results provide clues to elucidate the pathogenesis and possible treatment of gastrointestinal dysfunction and failure to thrive in patients with CFC syndrome.


Asunto(s)
Displasia Ectodérmica/enzimología , Estenosis Esofágica/enzimología , Insuficiencia de Crecimiento/enzimología , Hiperplasia Epitelial Focal/enzimología , Cardiopatías Congénitas/enzimología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Gastropatías/enzimología , Animales , Displasia Ectodérmica/genética , Displasia Ectodérmica/patología , Estenosis Esofágica/genética , Estenosis Esofágica/patología , Facies , Insuficiencia de Crecimiento/genética , Insuficiencia de Crecimiento/patología , Femenino , Hiperplasia Epitelial Focal/genética , Mutación de Línea Germinal , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Inhibidores de Proteínas Quinasas/farmacología , Gastropatías/genética
5.
Int J Mol Sci ; 20(3)2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30744146

RESUMEN

Brain histamine is a neurotransmitter and regulates diverse physiological functions. Previous studies have shown the involvement of histamine depletion in several neurological disorders, indicating the importance of drug development targeting the brain histamine system. Histamine N-methyltransferase (HNMT) is a histamine-metabolising enzyme expressed in the brain. Although pharmacological studies using HNMT inhibitors have been conducted to reveal the direct involvement of HNMT in brain functions, HNMT inhibitors with high specificity and sufficient blood⁻brain barrier permeability have not been available until now. Recently, we have phenotyped Hnmt-deficient mice to elucidate the importance of HNMT in the central nervous system. Hnmt disruption resulted in a robust increase in brain histamine concentration, demonstrating the essential role of HNMT in the brain histamine system. Clinical studies have suggested that single nucleotide polymorphisms of the human HNMT gene are associated with several brain disorders such as Parkinson's disease and attention deficit hyperactivity disorder. Postmortem studies also have indicated that HNMT expression is altered in human brain diseases. These findings emphasise that an increase in brain histamine levels by novel HNMT inhibitors could contribute to the improvement of brain disorders.


Asunto(s)
Encéfalo/metabolismo , Histamina N-Metiltransferasa/metabolismo , Amina Oxidasa (conteniendo Cobre)/metabolismo , Animales , Encefalopatías/tratamiento farmacológico , Encefalopatías/etiología , Encefalopatías/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Activación Enzimática , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Regulación Enzimológica de la Expresión Génica , Histamina/metabolismo , Histamina N-Metiltransferasa/antagonistas & inhibidores , Histamina N-Metiltransferasa/genética , Humanos , Redes y Vías Metabólicas , Ratones , Ratones Noqueados , Fenotipo , Receptores Histamínicos/metabolismo
6.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626077

RESUMEN

Antihistamines targeting the histamine H1 receptor play an important role in improving and maintaining the quality of life of patients with allergic rhinitis. For more effective and safer use of second-generation drugs, which are recommended by various guidelines, a classification based on their detailed characteristics is necessary. Antihistamines for first-line therapy should not have central depressant/sedative activities. Sedative properties (drowsiness and impaired performance) are associated with the inhibition of central histamine neurons. Brain H1 receptor occupancy (H1RO) is a useful index shown to be correlated with indices based on clinical findings. Antihistamines are classified into non-sedating (<20%), less-sedating (20⁻50%), and sedating (≥50%) groups based on H1RO. Among the non-sedating group, fexofenadine and bilastine are classified into "non-brain-penetrating antihistamines" based on the H1RO. These two drugs have many common chemical properties. However, bilastine has more potent binding affinity to the H1 receptor, and its action tends to last longer. In well-controlled studies using objective indices, bilastine does not affect psychomotor or driving performance even at twice the usual dose (20 mg). Upon selecting antihistamines for allergic rhinitis, various situations should be taken into our consideration. This review summarizes that the non-brain-penetrating antihistamines should be chosen for the first-line therapy of mild allergic rhinitis.


Asunto(s)
Antagonistas de los Receptores Histamínicos/uso terapéutico , Antagonistas de los Receptores Histamínicos H1 no Sedantes/uso terapéutico , Rinitis Alérgica/tratamiento farmacológico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Antagonistas de los Receptores Histamínicos/química , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos H1 no Sedantes/química , Antagonistas de los Receptores Histamínicos H1 no Sedantes/farmacología , Humanos , Receptores Histamínicos/metabolismo
7.
Biochem Biophys Res Commun ; 499(3): 688-695, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29605295

RESUMEN

Heparan sulfate (HS), a linear polysaccharide, is involved in diverse biological functions of various tissues. HS is expressed in pancreatic ß-cells and may be involved in ß-cell functions. However, the importance of HS for ß-cell function remains unknown. Here, we generated mice with ß-cell-specific deletion of Ext1 (ßExt1CKO), which encodes an enzyme essential for HS synthesis, to investigate the detailed roles of HS in ß-cell function. ßExt1CKO mice decreased body weights compared with control mice, despite increased food intake. Additionally, ßExt1CKO mice showed impaired glucose tolerance associated with decreased insulin secretion upon glucose challenge. Glucose-induced insulin secretion (GIIS) from isolated ßExt1CKO islets was also significantly reduced, highlighting the contribution of HS to insulin secretion and glucose homeostasis. The gene expression essential for GIIS was decreased in ßExt1CKO islets. Pdx1 and MafA were downregulated in ßExt1CKO islets, indicating that HS promoted ß-cell development and maturation. BrdU- or Ki67-positive ß-cells were reduced in ßExt1CKO pancreatic sections, suggesting the involvement of HS in the proliferation of ß-cells. Moreover, insufficient vascularization in ßExt1CKO islets may contribute to central distribution of α-cells. These data demonstrate HS plays diverse roles in ß-cells, and that loss of HS leads to insufficient insulin secretion and dysregulation of glucose homeostasis.


Asunto(s)
Glucosa/metabolismo , Heparitina Sulfato/metabolismo , Homeostasis , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Secreción de Insulina , Células Secretoras de Insulina/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Noqueados , N-Acetilglucosaminiltransferasas/metabolismo , Neovascularización Fisiológica , Vía de Señalización Wnt
8.
J Pharmacol Exp Ther ; 367(1): 9-19, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30021868

RESUMEN

Histamine induces chemotaxis of mast cells through the H4 receptor. However, little is known about the precise intracellular signaling pathway that mediates this process. In this study, we identified small GTPases Rac1 and Rac2 as intracellular binding partners of the H4 receptor and characterized their roles in H4 receptor signaling. We showed that histamine induced Rac GTPase activation via the H4 receptor. A Rac inhibitor NSC23766 attenuated chemotaxis of mast cells toward histamine, as well as histamine-induced calcium mobilization and extracellular signal-regulated kinase (ERK) activation. Histamine-induced migration of mast cells was also sensitive to PD98059, an inhibitor of the mitogen-activated protein kinase kinase, indicating that the Rac-ERK pathway was involved in chemotaxis through the H4 receptor. Inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) by LY294002 suppressed the histamine-induced chemotaxis and activation of Rac GTPases, suggesting that PI3K regulates chemotaxis upstream of Rac activation. Specific knockdown of Rac1 and Rac2 by short-hairpin RNA revealed that both Rac GTPases are necessary for histamine-induced migration. Downregulation of Rac1 and Rac2 led to attenuated response in calcium mobilization and ERK activation, respectively. These observations suggested that Rac1 and Rac2 have distinct and essential roles in intracellular signaling downstream of H4 receptor-PI3K in histamine-induced chemotaxis of mast cells.


Asunto(s)
Quimiotaxis , Mastocitos/citología , Receptores Histamínicos H4/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Calcio/metabolismo , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Histamina/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal , Proteínas de Unión al GTP rac/deficiencia , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1/deficiencia , Proteína de Unión al GTP rac1/genética , Proteína RCA2 de Unión a GTP
9.
Alzheimer Dis Assoc Disord ; 32(1): 62-69, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29028649

RESUMEN

BACKGROUND: Semantic variant primary progressive aphasia (svPPA) has been associated with a variety of proteinopathies, mainly transactive response DNA-binding protein, but also with tau and ß-amyloid. Recently selective tau tracers for positron emission tomography (PET) have been developed to determine the presence of cerebral tau deposits in vivo. Here, we investigated the topographical distribution of THK5351 in svPPA patients. MATERIALS AND METHODS: Five svPPA patients, 14 Alzheimer's disease patients, and 15 age-matched normal controls underwent [F]-THK5351 PET scans, magnetic resonance imaging, and detailed neuropsychological tests. [F]-fluorodeoxyglucose PET was obtained in 3 svPPA patients, whereas the remaining 2 underwent amyloid PET using [F]-flutemetamol. Tau distribution among the 3 groups was compared using regions of interest-based and voxel-based statistical analyses. RESULTS: In svPPA patients, [F]-THK5351 retention was elevated in the anteroinferior and lateral temporal cortices compared with the normal controls group (left>right), and in the left inferior and temporal polar region compared with Alzheimer's disease patients. [F]-THK5351 retention inversely correlated with glucose metabolism, whereas regional THK retention correlated with clinical severity. [F]-flutemetamol scans were negative for ß-amyloid. CONCLUSIONS: These findings show that [F]-THK5351 retention may be detected in cortical regions correlating with svPPA pathology.


Asunto(s)
Aminopiridinas , Afasia Progresiva Primaria/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Quinolinas , Radiofármacos , Anciano , Afasia Progresiva Primaria/patología , Encéfalo/patología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Proteínas tau
10.
J Pharmacol Sci ; 137(2): 122-128, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29858014

RESUMEN

Astrocytes play key roles in regulating brain homeostasis and neuronal activity. This is, in part, accomplished by the ability of neurotransmitters in the synaptic cleft to bind astrocyte membrane receptors, activating signalling cascades that regulate concentration of intracellular Ca2+ ([Ca2+]i) and gliotransmitter release, including ATP and glutamate. Gliotransmitters contribute to dendrite formation and synaptic plasticity, and in some cases, exacerbate neurodegeneration. The neurotransmitter histamine participates in several physiological processes, such as the sleep-wake cycle and learning and memory. Previous studies have demonstrated the expression of histamine receptors on astrocytes, but until now, only a few studies have examined the effects of histamine on astrocyte intracellular signalling and gliotransmitter release. Here, we used the human astrocytoma cell line 1321N1 to study the role of histamine in astrocyte intracellular signalling and gliotransmitter release. We found that histamine activated astrocyte signalling through histamine H1 and H2 receptors, leading to distinct cellular responses. Activation of histamine H1 receptors caused concentration-dependent release of [Ca2+]i from internal stores and concentration-dependent increase in glutamate release. Histamine H2 receptor activation increased cyclic adenosine monophosphate (cAMP) levels and phosphorylation of transcription factor cAMP response-element binding protein. Taken together, these data emphasize a role for histamine in neuron-glia communication.


Asunto(s)
Astrocitos/metabolismo , Glutamatos/metabolismo , Histamina/farmacología , Histamina/fisiología , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/fisiología , Calcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Neurotransmisores/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Hum Psychopharmacol ; 33(2): e2655, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29532516

RESUMEN

OBJECTIVE: Antihistamines often have sedative side effects. This was the first study to measure regional cerebral glucose (energy) consumption and hemodynamic responses in young adults during cognitive tests after antihistamine administration. METHODS: In this double-blind, placebo-controlled, three-way crossover study, 18 healthy young Japanese men received single doses of levocetirizine 5 mg and diphenhydramine 50 mg at intervals of at least six days. Subjective feeling, task performances, and brain activity were evaluated during three cognitive tests (word fluency, two-back, and Stroop). Regional cerebral glucose consumption changes were measured using positron emission tomography with [18 F]fluorodeoxyglucose. Regional hemodynamic responses were measured using near-infrared spectroscopy. RESULTS: Energy consumption in prefrontal regions was significantly increased after antihistamine administration, especially diphenhydramine, whereas prefrontal hemodynamic responses, evaluated with oxygenated hemoglobin levels, were significantly lower with diphenhydramine treatment. Stroop test accuracy was significantly impaired by diphenhydramine, but not by levocetirizine. There was no significant difference in subjective sleepiness. CONCLUSIONS: Physiological "coupling" between metabolism and perfusion in the healthy human brain may not be maintained under pharmacological influence due to antihistamines. This uncoupling may be caused by a combination of increased energy demands in the prefrontal regions and suppression of vascular permeability in brain capillaries after antihistamine treatment. Further research is needed to validate this hypothesis.


Asunto(s)
Cetirizina/farmacología , Cognición/efectos de los fármacos , Difenhidramina/farmacología , Hemodinámica/efectos de los fármacos , Antagonistas de los Receptores Histamínicos H1/farmacología , Corteza Prefrontal/efectos de los fármacos , Mapeo Encefálico , Estudios Cruzados , Método Doble Ciego , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Glucosa/metabolismo , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones , Corteza Prefrontal/irrigación sanguínea , Corteza Prefrontal/diagnóstico por imagen , Espectroscopía Infrarroja Corta , Factores de Tiempo
12.
Tohoku J Exp Med ; 245(1): 13-19, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29731479

RESUMEN

Positron emission mammography (PEM) has higher detection sensitivity for breast cancer compared with whole-body positron emission tomography (PET) due to higher spatial resolution. We have developed a new PEM device with high resolution over a wide field of view. This PEM device comprises novel scintillation crystals, praseodymium-doped lutetium aluminum garnet (Pr:LuAG). In the present study, the clinical use of the newly developed PEM for the detection of small breast cancer was compared with that of the conventional PET-computed tomography (PET/CT). Eighty-two patients with breast cancer less than 20 mm (UICC T1) participated in this study, including 23 patients with T1a or T1b breast cancer (less than 10 mm). Histologically-proved lesions were examined by PET/CT and PEM on the same day after injection of [18F]fluoro-2-deoxy-2-fluoro-D-glucose ([18F]FDG), a marker of glycolytic activity. The newly developed PEM showed better sensitivity of cancer detection compared with PET/CT especially in case of the small T1a or T1b lesions. Moreover, when the conventional PET/CT and new PEM were combined, the detection sensitivity with [18F]FDG molecular imaging for T1 (N = 82) and T1a plus T1b breast cancer (N = 23) were 90% and 70%, respectively. The uptake of [18F]FDG was proportional to the histological malignancy of breast cancer. Using the newly-developed PEM with [18F]FDG, we are able to identify and characterize exactly the small breast tumors less than 10 mm in combination with the conventional PET/CT. These data indicate that PEM and PET/CT are synergic and complementary for the detection of small breast cancer.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico , Mamografía , Tomografía de Emisión de Positrones , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico por imagen , Femenino , Fluorodesoxiglucosa F18/farmacocinética , Humanos , Procesamiento de Imagen Asistido por Computador , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones
13.
J Labelled Comp Radiopharm ; 61(7): 540-549, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29520821

RESUMEN

High specific activity is often a significant requirement for radiopharmaceuticals. To achieve that with fluorine-18 (18 F)-labeled probes, it is mandatory to start from no-carrier-added fluoride and to reduce to a minimum the amount of precursor in order to decrease the presence of any pseudocarrier. In the present study, a feasible and efficient method for microscale one-pot radiosynthesis of 18 F-labeled probes is described. It allows a substantial reduction in precursor, solvent, and reagents, thus reducing also possible side reaction in the case of base-sensitive precursors. The method is based on the use of a small amount of Kryptofix 2.2.2/potassium [18 F]fluoride in MeOH (K.222/K[18 F]F-MeOH) obtained using Oasis MAX and MCX cartridges. Five methods, differing in terms of MeOH evaporation and precursor addition, for the radiosynthesis of [18 F]fallypride and [18 F]FET in ≤50-µL scale, were examined and evaluated. The method using the addition of DMSO to the K.222/K[18 F]F-MeOH solution prior to MeOH evaporation is proposed as a versatile procedure for feasible one-pot 10- to 20-µL scale radiosyntheses. This method was successfully applied also to the radiosynthesis of [18 F]FES, [18 F]FLT, and [18 F]FMISO, with radiochemical yields comparable with those reported in the literature. Purification of a crude product by an analytical HPLC column was also demonstrated.


Asunto(s)
Radioisótopos de Flúor/química , Radioquímica/métodos , Radiofármacos/química , Radiofármacos/síntesis química , Técnicas de Química Sintética , Intercambio Iónico , Marcaje Isotópico , Metanol/química , Radioquímica/instrumentación
14.
Int J Mol Sci ; 19(12)2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30562962

RESUMEN

Accumulating evidence suggests that histamine synthesis induced in several types of tumor tissues modulates tumor immunity. We found that a transient histamine synthesis was induced in CD11b⁺Gr-1⁺ splenocytes derived from BALB/c mice transplanted with a syngeneic colon carcinoma, CT-26, when they were co-cultured with CT-26 cells. Significant levels of IFN-γ were produced under this co-culture condition. We explored the modulatory roles of histamine on IFN-γ production and found that several histamine receptor antagonists, such as pyrilamine, diphenhydramine, JNJ7777120, and thioperamide, could significantly suppress IFN-γ production. However, suppression of IFN-γ production by these antagonists was also found when splenocytes were derived from the Hdc-/- BALB/c mice. Suppressive effects of these antagonists were found on IFN-γ production induced by concanavalin A or the combination of an anti-CD3 antibody and an anti-CD28 antibody in a histamine-independent manner. Murine splenocytes were found to express H1 and H2 receptors, but not H3 and H4 receptors. IFN-γ production in the Hh1r-/- splenocytes induced by the combination of an anti-CD3 antibody and an anti-CD28 antibody was significantly suppressed by these antagonists. These findings suggest that pyrilamine, diphenhydramine, JNJ7777120, and thioperamide can suppress IFN-γ production in activated splenocytes in a histamine-independent manner.


Asunto(s)
Antagonistas de los Receptores Histamínicos/farmacología , Interferón gamma/biosíntesis , Bazo/metabolismo , Animales , Línea Celular Tumoral , Histamina/genética , Histamina/metabolismo , Interferón gamma/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Bazo/patología
15.
Biochem Biophys Res Commun ; 488(3): 534-540, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28526411

RESUMEN

Brain histamine acts as a neurotransmitter and regulates various physiological functions, such as learning and memory, sleep-wake cycles, and appetite regulation. We have recently shown that histamine H3 receptor (H3R) is expressed in primary mouse microglia and has a strong influence on critical functions in microglia, including chemotaxis, phagocytosis, and cytokine secretion in vitro. However, the importance of H3R in microglial activity in vivo remains unknown. Here, we examined the effects of JNJ10181457 (JNJ), a selective and potent H3R inverse agonist, on microglial functions ex vivo and in vivo. First, we injected ATP, which is a typical chemoattractant, into hippocampal slices to investigate the effect of JNJ on chemotaxis. ATP-induced microglial migration toward the injected site was significantly suppressed by JNJ treatment. Next, we examined whether JNJ affected microglial phagocytosis in hippocampal slices and in the prefrontal cortex. Microglial engulfment of dead neurons induced by N-methyl-d-aspartate was inhibited in the presence of JNJ. The increase in zymosan particle uptake by activated microglia in the prefrontal cortex was prevented by JNJ administration. Finally, we determined the importance of JNJ in a lipopolysaccharide (LPS)-induced depression model. JNJ reduced the LPS-induced upregulation of microglial pro-inflammatory cytokines and improved depression-like behaviour in the tail-suspension test. These results demonstrate the inhibitory effects of JNJ on chemotaxis, phagocytosis, and cytokine production in microglia inside the brain, and highlight the importance of microglial H3R for brain homeostasis.


Asunto(s)
Depresión/tratamiento farmacológico , Agonistas de los Receptores Histamínicos/farmacología , Microglía/efectos de los fármacos , Morfolinas/farmacología , Piperidinas/farmacología , Receptores Histamínicos H3/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Microglía/metabolismo
16.
Exp Dermatol ; 26(10): 868-874, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28191674

RESUMEN

Histamine regulates various inflammatory reactions. We have reported that the expression of histidine decarboxylase (HDC) was induced by subcutaneous implantation of nickel (Ni) wire. However, the source and functions of histamine in Ni elution and Ni wire-induced inflammation have not been completely studied. We aimed to elucidate the effects of de novo synthesized histamine on leucocyte infiltration and Ni elution. Implantation of Ni wire induced an increase in the Ni ion content of the surrounding tissues and serum and in the mRNA levels of HDC, a histamine-producing enzyme, macrophage inflammatory protein-2 (MIP-2), a chemoattractant for neutrophils, and monocyte chemoattractant protein-1 (MCP-1), a chemoattractant for monocytes. The Ni wire induced HDC expression even in mast cell-deficient WBB6F1-W/WV mice. In HDC knockout (HDC KO) mice, the Ni wire-induced increase in MIP-2 mRNA expression was significantly higher than that in wild-type mice but not MCP-1. MIP-2 expression was enhanced in histamine H2 receptor knockout (H2R KO) mice but not in WBB6F1-W/WV mice. Histamine inhibited NiCl2 -induced MIP-2 mRNA expression in mouse bone marrow-derived macrophages (BMDMs) obtained from wild-type mice; this inhibition was not observed in BMDMs from H2R KO mice. Ni elution increased in HDC KO mice, in which leucocyte infiltration also increased, and was suppressed in mice treated with neutrophil-specific antibody. These results suggest that the Ni wire induced HDC expression in non-mast cells and that, in the chronic phase of inflammation, endogenous histamine reduced Ni elution, probably through regulation of MIP-2 expression and neutrophil migration.


Asunto(s)
Movimiento Celular , Histamina/metabolismo , Inflamación/metabolismo , Neutrófilos/fisiología , Níquel/metabolismo , ARN Mensajero/metabolismo , Animales , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Regulación hacia Abajo , Expresión Génica/efectos de los fármacos , Histamina/farmacología , Histidina Descarboxilasa/genética , Histidina Descarboxilasa/metabolismo , Inflamación/etiología , Inflamación/genética , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Níquel/efectos adversos , Níquel/farmacología , Prótesis e Implantes , Receptores Histamínicos H2/genética
17.
Handb Exp Pharmacol ; 241: 173-187, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27679412

RESUMEN

Histamine plays an important role as a neurotransmitter in diverse brain functions, and clearance of histamine is essential to avoid excessive histaminergic neuronal activity. Histamine N-methyltransferase, which is an enzyme in the central nervous system that metabolizes histamine, is localized to the cytosol. This suggests that a histamine transport process is essential to inactivate histamine. Previous reports have shown the importance of astrocytes for histamine transport, although neuronal histamine transport could not be ruled out. High-affinity and selective histamine transporters have not yet been discovered, although it has been reported that the following three polyspecific transporters transport histamine: organic cation transporter (OCT) 2, OCT3, and plasma membrane monoamine transporter (PMAT). The K m values of human OCT2, OCT3, and PMAT are 0.54, 0.64, and 4.4 mM, respectively. The three transporters are expressed in the brain, and their regional distribution is different. Recent studies revealed the contribution of OCT3 and PMAT to histamine transport by primary human astrocytes. Several investigations using mice supported the importance of OCT3 for histamine clearance in the brain. However, further studies are required to elucidate the detailed mechanism of histamine transport in the brain.


Asunto(s)
Transporte Biológico/fisiología , Encéfalo/metabolismo , Proteínas de Transporte de Nucleósido Equilibrativas/metabolismo , Histamina/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Animales , Membrana Celular/metabolismo , Humanos
18.
Eur J Nucl Med Mol Imaging ; 43(12): 2211-2218, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27430946

RESUMEN

PURPOSE: 18F-THK5351 is a novel radiotracer developed for in vivo imaging of tau pathology in the brain. For the quantitative assessment of tau deposits in the brain, it is important that the radioactive metabolite does not enter the brain and that it does not bind to tau fibrils. The purpose of the study was to identify a radiolabeled metabolite of 18F-THK5351 in blood samples from human subjects and to characterize its pharmacological properties. METHODS: Venous blood samples were collected from three human subjects after injection of 18F-THK5351 and the plasma metabolite was measured by high performance thin layer chromatography. In addition, mass spectrometry analysis and enzymatic assays were used to identify this metabolite. Mice were used to investigate the blood-brain barrier permeability of the radioactive metabolite. Furthermore, the binding ability of the metabolite to tau aggregates was evaluated using autoradiography and binding assays using human brain samples. RESULTS: About 13 % of the unmetabolized radiotracer was detectable in human plasma at 60 min following the injection of 18F-THK5351. The isolated radiometabolite of 18F-THK5351 was the sulphoconjugate of THK5351. This metabolite could be produced in vitro by incubating THK5351 with liver but not brain homogenates. The metabolite did not penetrate the blood-brain barrier in mice, and exhibited little binding to tau protein aggregates in post-mortem human brain samples. CONCLUSIONS: These results suggest that the sole metabolite detectable in plasma seems to be generated outside the brain and does not cross into the brain, which does not affect quantitative analysis of PET images.


Asunto(s)
Aminopiridinas/sangre , Aminopiridinas/farmacocinética , Barrera Hematoencefálica/metabolismo , Imagen Molecular/métodos , Quinolinas/sangre , Quinolinas/farmacocinética , Proteínas tau/metabolismo , Anciano , Aminopiridinas/síntesis química , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Femenino , Humanos , Marcaje Isotópico/métodos , Masculino , Tasa de Depuración Metabólica , Ratones , Ratones Endogámicos ICR , Quinolinas/síntesis química , Radiofármacos/sangre , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Distribución Tisular
19.
Hum Psychopharmacol ; 31(3): 167-77, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26999510

RESUMEN

OBJECTIVE: Antihistamines are often used for treating allergic rhinitis. However, many older antihistamines cause sedative side effects. The sedative effects of antihistamines on car-driving have been investigated. This has not been investigated for levocetirizine, a new-generation antihistamine, in Asian populations, and so we evaluated its sedative effects in healthy Japanese subjects. METHODS: In this double-blind, placebo-controlled, four-way crossover study, healthy volunteers received single doses of levocetirizine 5 mg, fexofenadine 60 mg, diphenhydramine 50 mg, and placebo at intervals of at least 6 days. Simple brake reaction time and choice brake reaction time task (CBRT), a lateral tracking (LT) task, and a multiple task, a mixture of CBRT and LT task, were used to compare driving performance between the four drugs. Subjective sedation was also assessed. RESULTS: The simple brake reaction time and CBRT, and the CBRT component of the multiple task, did not show any significant differences between the drugs. In contrast, the LT, both as a single parameter and as a component of the multiple task, showed significant differences between diphenhydramine and the newer-generation antihistamines in a manner that corresponds with subjective sedation. CONCLUSIONS: Levocetirizine and fexofenadine did not impair psychomotor performance in subjects performing simulated car-driving tasks, while diphenhydramine did impair psychomotor performance in the subjects. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Conducción de Automóvil , Cetirizina/efectos adversos , Difenhidramina/efectos adversos , Terfenadina/análogos & derivados , Adulto , Pueblo Asiatico , Cetirizina/administración & dosificación , Estudios Cruzados , Difenhidramina/administración & dosificación , Método Doble Ciego , Femenino , Antagonistas de los Receptores Histamínicos H1/administración & dosificación , Antagonistas de los Receptores Histamínicos H1/efectos adversos , Antagonistas de los Receptores Histamínicos H1 no Sedantes/administración & dosificación , Antagonistas de los Receptores Histamínicos H1 no Sedantes/efectos adversos , Humanos , Masculino , Desempeño Psicomotor/efectos de los fármacos , Tiempo de Reacción/efectos de los fármacos , Terfenadina/administración & dosificación , Terfenadina/efectos adversos , Adulto Joven
20.
Glia ; 63(7): 1213-25, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25754956

RESUMEN

Histamine is a physiological amine which initiates a multitude of physiological responses by binding to four known G-protein coupled histamine receptor subtypes as follows: histamine H1 receptor (H1 R), H2 R, H3 R, and H4 R. Brain histamine elicits neuronal excitation and regulates a variety of physiological processes such as learning and memory, sleep-awake cycle and appetite regulation. Microglia, the resident macrophages in the brain, express histamine receptors; however, the effects of histamine on critical microglial functions such as chemotaxis, phagocytosis, and cytokine secretion have not been examined in primary cells. We demonstrated that mouse primary microglia express H2 R, H3 R, histidine decarboxylase, a histamine synthase, and histamine N-methyltransferase, a histamine metabolizing enzyme. Both forskolin-induced cAMP accumulation and ATP-induced intracellular Ca(2+) transients were reduced by the H3 R agonist imetit but not the H2 R agonist amthamine. H3 R activation on two ubiquitous second messenger signalling pathways suggests that H3 R can regulate various microglial functions. In fact, histamine and imetit dose-dependently inhibited microglial chemotaxis, phagocytosis, and lipopolysaccharide (LPS)-induced cytokine production. Furthermore, we confirmed that microglia produced histamine in the presence of LPS, suggesting that H3 R activation regulate microglial function by autocrine and/or paracrine signalling. In conclusion, we demonstrate the involvement of histamine in primary microglial functions, providing the novel insight into physiological roles of brain histamine.


Asunto(s)
Quimiotaxis/fisiología , Citocinas/metabolismo , Microglía/fisiología , Fagocitosis/fisiología , Receptores Histamínicos H3/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Histamina/metabolismo , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Receptores Histamínicos H2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA