Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 153(4): 896-909, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23663785

RESUMEN

Sexual dimorphisms in the brain underlie behavioral sex differences, but the function of individual sexually dimorphic neuronal populations is poorly understood. Neuronal sexual dimorphisms typically represent quantitative differences in cell number, gene expression, or other features, and it is unknown whether these dimorphisms control sex-typical behavior exclusively in one sex or in both sexes. The progesterone receptor (PR) controls female sexual behavior, and we find many sex differences in number, distribution, or projections of PR-expressing neurons in the adult mouse brain. Using a genetic strategy we developed, we have ablated one such dimorphic PR-expressing neuronal population located in the ventromedial hypothalamus (VMH). Ablation of these neurons in females greatly diminishes sexual receptivity. Strikingly, the corresponding ablation in males reduces mating and aggression. Our findings reveal the functions of a molecularly defined, sexually dimorphic neuronal population in the brain. Moreover, we show that sexually dimorphic neurons can control distinct sex-typical behaviors in both sexes.


Asunto(s)
Agresión/fisiología , Hipotálamo/metabolismo , Neuronas/metabolismo , Caracteres Sexuales , Conducta Sexual , Animales , Femenino , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Progesterona/análisis , Receptores de Progesterona/metabolismo , Conducta Sexual Animal
2.
Cell ; 148(3): 596-607, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22304924

RESUMEN

Sex hormones such as estrogen and testosterone are essential for sexually dimorphic behaviors in vertebrates. However, the hormone-activated molecular mechanisms that control the development and function of the underlying neural circuits remain poorly defined. We have identified numerous sexually dimorphic gene expression patterns in the adult mouse hypothalamus and amygdala. We find that adult sex hormones regulate these expression patterns in a sex-specific, regionally restricted manner, suggesting that these genes regulate sex typical behaviors. Indeed, we find that mice with targeted disruptions of each of four of these genes (Brs3, Cckar, Irs4, Sytl4) exhibit extremely specific deficits in sex specific behaviors, with single genes controlling the pattern or extent of male sexual behavior, male aggression, maternal behavior, or female sexual behavior. Taken together, our findings demonstrate that various components of sexually dimorphic behaviors are governed by separable genetic programs.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Perfilación de la Expresión Génica , Hipotálamo/metabolismo , Caracteres Sexuales , Conducta Sexual Animal , Agresión , Animales , Estro/metabolismo , Femenino , Masculino , Conducta Materna , Ratones , Ovario/metabolismo , Testículo/metabolismo , Testosterona/metabolismo
3.
Artif Organs ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949484

RESUMEN

BACKGROUND: Liver transplantation is used for treating end-stage liver disease, fulminant hepatitis, and oncological malignancies and organ shortage is a major limiting factor worldwide. The use of grafts based on extended donor criteria have become internationally accepted. Oxygenated machine perfusion technologies are the most recent advances in organ transplantation; however, it is only applied after a period of cold ischemia. Due to its high cost, we aimed to use a novel device, OxyFlush®, based on oxygenation of the preservation solution, applied during liver procurement targeting the maintenance of ATP during static cold storage (SCS). METHODS: Twenty patients were randomly assigned to the OxyFlush or control group based on a 1:1 ratio. In the OxyFlush group, the perfusion solution was oxygenated with OxyFlush® device while the control group received a non-oxygenated solution. Liver and the common bile duct (CBD) biopsies were obtained at three different time points. The first was at the beginning of the procedure, the second during organ preparation, and the third after total liver reperfusion. Biopsies were analyzed, and adenosine triphosphate (ATP) levels and histological scores of the liver parenchyma and CBD were assessed. Postoperative laboratory tests were performed. RESULTS: OxyFlush® was able to maintain ATP levels during SCS and improved the damage caused by the lack of oxygen in the CBD. However, OxyFlush® did not affect laboratory test results and histological findings of the parenchyma. CONCLUSION: We present a novel low-cost device that is feasible and could represent a valuable tool in organ preservation during SCS.

4.
J Chem Inf Model ; 63(13): 4070-4078, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37350740

RESUMEN

DCAF1 functions as a substrate recruitment subunit for the RING-type CRL4DCAF1 and the HECT family EDVPDCAF1 E3 ubiquitin ligases. The WDR domain of DCAF1 serves as a binding platform for substrate proteins and is also targeted by HIV and SIV lentiviral adaptors to induce the ubiquitination and proteasomal degradation of antiviral host factors. It is therefore attractive both as a potential therapeutic target for the development of chemical inhibitors and as an E3 ligase that could be recruited by novel PROTACs for targeted protein degradation. In this study, we used a proteome-scale drug-target interaction prediction model, MatchMaker, combined with cheminformatics filtering and docking to identify ligands for the DCAF1 WDR domain. Biophysical screening and X-ray crystallographic studies of the predicted binders confirmed a selective ligand occupying the central cavity of the WDR domain. This study shows that artificial intelligence-enabled virtual screening methods can successfully be applied in the absence of previously known ligands.


Asunto(s)
Inteligencia Artificial , Proteínas Portadoras , Ligandos , Proteínas Portadoras/química , Ubiquitina-Proteína Ligasas/metabolismo , Aprendizaje Automático
5.
Molecules ; 27(22)2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36432152

RESUMEN

Chronic inflammation is commonly accompanied by the stimulation of matrix metalloproteinases (MMPs) production and the degradation of the extracellular matrix. The overexpression of MMP-9 (Gelatinase B) highly participates in the progression of pathetic cardiac remodeling and liver cancer metastasis. Panax notoginseng (Burkill) F. H. Chen (Sanqi), a widely used traditional Chinese medicinal herb, shows myocardial protective and anti-tumor effects. In this study, we examined the inhibitory effect of different PNG extracts on tumor necrosis factor (TNF)-α-induced MMP-9 expression in cardiac myoblast H9c2 cells. Using a bioassay-guided fractionation scheme, the most active extract was fractionated by silica gel column chromatography and high-performance liquid chromatography until an active compound was obtained. The compound was identified as Ginsenoside Rb1 by nuclear magnetic resonance. Ginsenoside Rb1 inhibited TNF-α-induced MMP-9 production in both H9c2 and liver carcinoma HepG-2 cells. Interestingly, it did not affect the MMP-2 (Gelatinase A) level and the cell proliferation of the two cell lines. The inhibitory effects of Ginsenoside Rb1 may be due to its modulation of double-strand RNA-dependent protein kinase and nuclear factor kappa B signaling pathways. The results reveal the potential use of Ginsenoside Rb1 for the treatment of inflammatory and MMP-9-related cardiac remodeling and metastasis of hepatocellular carcinomas.


Asunto(s)
Panax notoginseng , Panax notoginseng/química , FN-kappa B/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , eIF-2 Quinasa , Remodelación Ventricular
6.
J Neurosci ; 39(47): 9294-9305, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31591157

RESUMEN

Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations in TSC1 or TSC2 Patients frequently have epilepsy, autism spectrum disorder, and/or intellectual disability, as well as other systemic manifestations. In this study, we differentiated human induced pluripotent stem cells (iPSCs) from a female patient with TSC with one or two mutations in TSC2 into neurons using induced expression of NGN2 to examine neuronal dysregulation associated with the neurological symptoms in TSC. Using this method, neuronal differentiation was comparable between the three genotypes of iPSCs. We observed that TSC2+/- neurons show mTOR complex 1 (mTORC1) hyperactivation and associated increased cell body size and process outgrowth, as well as exacerbation of the abnormalities by loss of the second allele of TSC2 in TSC2-/- neurons. Interestingly, iPSC-derived neurons with either a single or biallelic mutation in TSC2 demonstrated hypersynchrony and downregulation of FMRP targets. However, only neurons with biallelic mutations of TSC2 demonstrated hyperactivity and transcriptional dysregulation observed in cortical tubers. These data demonstrate that loss of one allele of TSC2 is sufficient to cause some morphological and physiological changes in human neurons but that biallelic mutations in TSC2 are necessary to induce gene expression dysregulation present in cortical tubers. Finally, we found that treatment of iPSC-derived neurons with rapamycin reduced neuronal activity and partially reversed gene expression abnormalities, demonstrating that mTOR dysregulation contributes to both phenotypes. Therefore, biallelic mutations in TSC2 and associated molecular dysfunction, including mTOR hyperactivation, may play a role in the development of cortical tubers.SIGNIFICANCE STATEMENT In this study, we examined neurons derived from induced pluripotent stem cells with two, one, or no functional TSC2 (tuberous sclerosis complex 2) alleles and found that loss of one or both alleles of TSC2 results in mTORC1 hyperactivation and specific neuronal abnormalities. However, only biallelic mutations in TSC2 resulted in elevated neuronal activity and upregulation of cell adhesion genes that is also observed in cortical tubers. These data suggest that loss of heterozygosity of TSC1 or TSC2 may play an important role in the development of cortical tubers, and potentially epilepsy, in patients with TSC.


Asunto(s)
Alelos , Células Madre Pluripotentes Inducidas/fisiología , Mutación/genética , Neuronas/fisiología , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética , Esclerosis Tuberosa/genética , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Neuronas/patología , Esclerosis Tuberosa/patología
7.
Vis Neurosci ; 35: E004, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29905117

RESUMEN

A unique class of intrinsically photosensitive retinal ganglion cells in mammalian retinae has been recently discovered and characterized. These neurons can generate visual signals in the absence of inputs from rods and cones, the conventional photoreceptors in the visual system. These light sensitive ganglion cells (mRGCs) express the non-rod, non-cone photopigment melanopsin and play well documented roles in modulating pupil responses to light, photoentrainment of circadian rhythms, mood, sleep and other adaptive light functions. While most research efforts in mammals have focused on mRGCs in retina, recent studies reveal that melanopsin is expressed in non-retinal tissues. For example, light-evoked melanopsin activation in extra retinal tissue regulates pupil constriction in the iris and vasodilation in the vasculature of the heart and tail. As another example of nonretinal melanopsin expression we report here the previously unrecognized localization of this photopigment in nerve fibers within the cornea. Surprisingly, we were unable to detect light responses in the melanopsin-expressing corneal fibers in spite of our histological evidence based on genetically driven markers and antibody staining. We tested further for melanopsin localization in cell bodies of the trigeminal ganglia (TG), the principal nuclei of the peripheral nervous system that project sensory fibers to the cornea, and found expression of melanopsin mRNA in a subset of TG neurons. However, neither electrophysiological recordings nor calcium imaging revealed any light responsiveness in the melanopsin positive TG neurons. Given that we found no light-evoked activation of melanopsin-expressing fibers in cornea or in cell bodies in the TG, we propose that melanopsin protein might serve other sensory functions in the cornea. One justification for this idea is that melanopsin expressed in Drosophila photoreceptors can serve as a temperature sensor.


Asunto(s)
Córnea/metabolismo , Regulación de la Expresión Génica/fisiología , Opsinas de Bastones/genética , Ganglio del Trigémino/metabolismo , Animales , Cuerpo Celular/metabolismo , Células Cultivadas , Dependovirus/genética , Electrofisiología , Femenino , Cobayas , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fibras Nerviosas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Opsinas de Bastones/metabolismo , Transfección
8.
J Immunol ; 191(2): 892-901, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23776175

RESUMEN

Recognition of microbial products by TLRs is critical for mediating innate immune responses to invading pathogens. In this study, we identify a novel scaffold protein in TLR4 signaling called SAM and SH3 domain containing protein 1 (SASH1). Sash1 is expressed across all microvascular beds and functions as a scaffold molecule to independently bind TRAF6, TAK1, IκB kinase α, and IκB kinase ß. This interaction fosters ubiquitination of TRAF6 and TAK1 and promotes LPS-induced NF-κB, JNK, and p38 activation, culminating in increased production of proinflammatory cytokines and increased LPS-induced endothelial migration. Our findings suggest that SASH1 acts to assemble a signaling complex downstream of TLR4 to activate early endothelial responses to receptor activation.


Asunto(s)
Células Endoteliales/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Movimiento Celular , Activación Enzimática , Quinasa I-kappa B/metabolismo , Inmunidad Innata , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipopolisacáridos/inmunología , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Interferencia de ARN , Transducción de Señal , Proteínas Supresoras de Tumor/genética , Ubiquitinación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Am J Hosp Palliat Care ; 41(6): 658-663, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37487577

RESUMEN

BACKGROUND: The experience of living with cancer is marked by suffering and loss, which creates a need for healing. Understanding what healing means to patients and how clinicians can play a role in the healing process is essential to holistic cancer care. OBJECTIVE: The aim of this study was to explore the perspectives of cancer patients on the meaning and experiences of healing and the qualities of a clinician and the clinician-patient relationship that are healing. METHODS: A qualitative study was conducted using semi-structured interviews with 14 cancer patients. Participants were asked about their illness experience, definition of healing, qualities of a healer, and relationships with clinicians that were healing. Interview transcripts were coded, and qualitative analysis was conducted to identify major themes. RESULTS: Participants defined the nature of healing as comprising aspects of physical, mental, emotional, and spiritual well-being. Participants described healing as alleviating pain and symptoms; promoting mental strength, emotional comfort, and spiritual connection; restoring and adapting to losses; and improving quality of life. The qualities of a clinician that contributed to a healing relationship included listening, empathy and compassion, understanding patients' values and goals, and caring for the patient as a whole person. CONCLUSION: Participants viewed healing as physical, psychosocial, and spiritual in nature and an important part of their cancer experience with an emphasis on quality of life. Clinicians played an important role beyond treating the cancer by helping in the healing process through their humanistic qualities and holistic approach to patient care.

10.
Bioresour Technol ; 399: 130594, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493941

RESUMEN

Microbial oils are a sustainable biomass-derived substitute for liquid fuels and vegetable oils. Oilcane, an engineered sugarcane with superior feedstock characteristics for biodiesel production, is a promising candidate for bioconversion. This study describes the processing of oilcane stems into juice and hydrothermally pretreated lignocellulosic hydrolysate and their valorization to ethanol and microbial oil using Saccharomyces cerevisiae and engineered Rhodosporidium toruloides strains, respectively. A bioethanol titer of 106 g/L was obtained from S. cerevisiae grown on oilcane juice in a 3 L fermenter, and a lipid titer of 8.8 g/L was obtained from R. toruloides grown on oilcane hydrolysate in a 75 L fermenter. Oil was extracted from the R. toruloides cells using supercritical CO2, and the observed fatty acid profile was consistent with previous studies on this strain. These results demonstrate the feasibility of pilot-scale lipid production from oilcane hydrolysate as part of an integrated bioconversion strategy.


Asunto(s)
Saccharomyces cerevisiae , Saccharum , Ácidos Grasos , Biocombustibles , Biomasa
11.
Biotechnol Prog ; : e3485, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051853

RESUMEN

It is important to increase manufacturing speed to make medicines more widely available. One bottleneck for CHO-based drug substance release is the in vitro viral (IVV) cell-based assay on unprocessed bulk. To increase process speed, we evaluate the suitability of replacing the IVV cell-based assay with next-generation sequencing (NGS). First, we outline how NGS is currently used in the pharmaceutical industry, and how it may apply to CHO virus testing. Second, we examine CHO virus contamination history. Since prior virus contaminants can replicate in the production bioreactor, we perform a literature search and classify 159 viruses as high, medium, low, or unknown risk based on their ability to infect CHO cells. Overall, the risk of virus contamination during the CHO manufacturing process is low. Only six viruses were reported to have contaminated CHO bioprocesses over the past several decades, and were primarily caused by fetal bovine serum or cell culture components. These virus contamination events can be mitigated through limitation and control of raw materials, combined with virus testing and virus clearance technologies. The list of CHO infectious viruses provides a starting framework for virus safety risk assessment and NGS development. Furthermore, ICH Q5A (R2) includes NGS as a molecular method for adventitious agent testing, paving a path forward for modernizing CHO virus testing.

12.
ScientificWorldJournal ; 2013: 896873, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24348193

RESUMEN

Neurodegenerative diseases refer to the selective loss of neuronal systems in patients. The diseases cause high morbidity and mortality to approximately 22 million people worldwide and the number is expected to be tripled by 2050. Up to now, there is no effective prevention and treatment for the neurodegenerative diseases. Although some of the clinical therapies target at slowing down the progression of symptoms of the diseases, the general effectiveness of the drugs has been far from satisfactory. Traditional Chinese medicine becomes popular alternative remedies as it has been practiced clinically for more than thousands of years in China. As neurodegenerative diseases are mediated through different pathways, herbal decoction with multiple herbs is used as an effective therapeutic approach to work on multiple targets. Gastrodia and Uncaria Decoction, a popular TCM decoction, has been used to treat stroke in China. The decoction contains compounds including alkaloids, flavonoids, iridoids, carotenoids, and natural phenols, which have been found to possess anti-inflammatory, antioxidative, and antiapoptotic effects. In this review, we will summarize the recent publications of the pharmacological effects of these five groups of compounds. Understanding the mechanisms of action of these compounds may provide new treatment opportunities for the patients with neurodegenerative diseases.


Asunto(s)
Medicamentos Herbarios Chinos/uso terapéutico , Gastrodia/química , Medicina Tradicional China , Enfermedades Neurodegenerativas/tratamiento farmacológico , Tracheophyta/química , Animales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo
13.
Pathology ; 55(6): 843-849, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37336684

RESUMEN

The indirect immunofluorescence assay (IIFA) on HEp-2 cells has been widely used for screening anti-nuclear antibodies (ANA) that are associated with systemic autoimmune rheumatic diseases (SARD). Sera containing ANA display multiple distinct fluorescence patterns on HEp-2 cells. Among them, a dense fine speckled (DFS) pattern caused by anti-DFS70 antibodies has been reported to have higher prevalence in healthy individuals than in patients with SARD. This DFS pattern is often difficult to distinguish amongst other SARD-associated ANA patterns, in particular a mixed homogeneous and speckled pattern. Furthermore, a strong DFS pattern can mask other SARD-associated patterns. Hence, we developed a novel immunoprecipitation method using magnetic beads to remove anti-DFS70 antibodies in serum prior to running IIFA. We also aimed to confirm the presence of anti-DFS70 and to uncover any SARD-associated ANA patterns masked by a strong DFS pattern. The sera used in our study were from 70 individuals who had routine ANA screen, of which 35 sera had an isolated DFS pattern with monospecific anti-DFS70 antibodies confirmed by a complementary assay, and 35 were control sera without a DFS pattern. An immunoprecipitation method using magnetic beads coated with recombinant human full length DFS70 protein was developed. The performance of this new method was evaluated in comparison to an immunoadsorption method using the same DFS70 protein. Our newly developed immunoprecipitation method demonstrated excellent sensitivity (91.4%) and specificity (100%) in confirming the DFS pattern associated with anti-DFS70 in sera. Additionally, our method was able to remove anti-DFS70 and uncover SARD-associated ANA patterns masked by a strong DFS pattern. It also showed a clearer background on IIFA than that of the immunoadsorption method. The novel magnetic bead-based immunoprecipitation method demonstrated satisfactory performance in removing anti-DFS70 without interfering with the detection of other antibodies. It can be easily integrated with IIFA to confirm anti-DFS70 associated DFS pattern. Additionally, it can simultaneously unmask other ANA patterns, which cannot be achieved by a conventional protocol that requires a complementary anti-DFS70 specific assay to be performed. Therefore, the novel method provides a more effective and accurate solution for ANA screening.


Asunto(s)
Enfermedades Autoinmunes , Enfermedades Reumáticas , Humanos , Enfermedades Autoinmunes/diagnóstico , Anticuerpos Antinucleares , Enfermedades Reumáticas/diagnóstico , Técnica del Anticuerpo Fluorescente Indirecta/métodos , Fenómenos Magnéticos
14.
J Ethnopharmacol ; 301: 115790, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36208821

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Coriolus versicolor (CV) has been used in traditional Chinese medicine for over 2000 years as a premium medicine for enhancing good health and longevity. The immunomodulatory and anti-cancer effects of polysaccharopeptides (PSP) from cultured CV have been extensively studied; however, the effect and the mechanism of action of other small molecules from CV remain unknown. AIM OF THE STUDY: we aim to examine the immunomodulatory and anti-cancer effects of the small molecules from CV (SMCV) and identify the active compounds that are responsible for the biological effects against glioblastoma multiforme cells. MATERIALS AND METHODS: The effects of SMCV/active compound on cytokine and MMP mRNA expressions and productions were assessed by quantitative reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. An active compound from SMCV was identified with a bioassay-guided fractionation scheme. The potential mode of action of the active compound was further investigated by identifying the cell signaling pathway. The protein expressions of phospho-ERK, phospho-JNK and phospho-p38 MAPKs were measured by Western Blotting. The anti-invasive effect of SMCV/bioactive compound against T98G, lung carcinoma (A549), and breast adenocarcinoma (MDA-MB-231) cells were determined using invasion assay. RESULTS: Our results showed that SMCV had strong immunomodulatory effect by suppressing LPS-induced TNF-α production, whereas increasing poly I:C-induced IFN-ß level in PBMac. SMCV not only possessed indirect anti-cancer effect by suppressing TNF-α-induced MMP-3 production in glioblastoma T98G cells, but also directly reduced the invasion ability of malignant cells including T98G, A549 and MDA-MB-231. Using bioassay-guided fractionation scheme, we isolated 9-KODE methyl ester (compound AM) that was responsible for the bioactivity of SMCV. This compound suppressed TNF-α-induced MMP-3 production in T98G cells and the suppression may be correlated with the inactivation of p38 mitogen-activated protein kinase (MAPK) pathway. Moreover, compound AM also directly reduced T98G cell invasion. CONCLUSION: Results of our present study provides scientific evidence that SMCV possesses immunomodulatory and anti-cancer effects. Its bioactive compound, compound AM, is a potential new drug candidate against the invasion and metastasis of glioblastoma cells.


Asunto(s)
Glioblastoma , Proteínas Quinasas Activadas por Mitógenos , Humanos , Glioblastoma/tratamiento farmacológico , Factores Inmunológicos/farmacología , Metaloproteinasa 3 de la Matriz , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos , Factor de Necrosis Tumoral alfa/metabolismo , Sistema de Señalización de MAP Quinasas , Metástasis de la Neoplasia
15.
Pathology ; 54(7): 904-909, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35995618

RESUMEN

The presence of monospecific dense fine speckled 70 (DFS70) pattern in indirect immunofluorescence assay (IFA) without concomitant systemic autoimmune related diseases (SARD)-associated antibodies could be an exclusion biomarker for SARD. Since interpretation of DFS pattern on IFA is subjective, an assay for confirming the presence of anti-DFS70 is required. We evaluated the performance of two commercial assays [fluorescence enzyme immunoassay (FEIA) and line immunoassay (LIA)] for detecting anti-DFS70. Sera with monospecific DFS (n=176) and without DFS (n=179) pattern from referred patients for ANA testing, in two independent laboratories and healthy donors, were investigated for anti-DFS70 by FEIA (Phadia EliA) and LIA (Euroimmun). The assay performance including sensitivity and specificity at different cut-offs was evaluated, and optimal cut-offs were determined. The newly established optimal cut-offs (2.7 U/mL on EliA, band intensity of 28 on LIA) showed significantly better assay performance in detecting anti-DFS70 and confirming monospecific DFS pattern. A relative sensitivity of 93.7% with relative specificity of 100% on EliA and a relative sensitivity of 96.6% with relative specificity of 95.3% on LIA were achieved. Superior Cohen's Kappa agreements with IFA were also achieved for both assays (0.936 for EliA and 0.906 for LIA). Application of an optimal cut-off can significantly increase the assay performance for anti-DFS70 and enhance the accuracy in reporting DFS pattern by IFA.


Asunto(s)
Anticuerpos Antinucleares , Enfermedades Autoinmunes , Humanos , Enfermedades Autoinmunes/diagnóstico , Proteínas Adaptadoras Transductoras de Señales , Factores de Transcripción , Técnica del Anticuerpo Fluorescente Indirecta
16.
Brain Behav ; 12(9): e2736, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35971662

RESUMEN

INTRODUCTION: Increasing age is the number one risk factor for developing cognitive decline and neurodegenerative disease. Aged humans and mice exhibit numerous molecular changes that contribute to a decline in cognitive function and increased risk of developing age-associated diseases. Here, we characterize multiple age-associated changes in male C57BL/6J mice to understand the translational utility of mouse aging. METHODS: Male C57BL/6J mice from various ages between 2 and 24 months of age were used to assess behavioral, as well as, histological and molecular changes across three modalities: neuronal, microgliosis/neuroinflammation, and the neurovascular unit (NVU). Additionally, a cohort of 4- and 22-month-old mice was used to assess blood-brain barrier (BBB) breakdown. Mice in this cohort were treated with a high, acute dose of lipopolysaccharide (LPS, 10 mg/kg) or saline control 6 h prior to sacrifice followed by tail vein injection of 0.4 kDa sodium fluorescein (100 mg/kg) 2 h later. RESULTS: Aged mice showed a decline in cognitive and motor abilities alongside decreased neurogenesis, proliferation, and synapse density. Further, neuroinflammation and circulating proinflammatory cytokines were increased in aged mice. Additionally, we found changes at the BBB, including increased T cell infiltration in multiple brain regions and an exacerbation in BBB leakiness following chemical insult with age. There were also a number of readouts that were unchanged with age and have limited utility as markers of aging in male C57BL/6J mice. CONCLUSIONS: Here we propose that these changes may be used as molecular and histological readouts that correspond to aging-related behavioral decline. These comprehensive findings, in the context of the published literature, are an important resource toward deepening our understanding of normal aging and provide an important tool for studying aging in mice.


Asunto(s)
Disfunción Cognitiva , Enfermedades Neurodegenerativas , Envejecimiento/fisiología , Animales , Disfunción Cognitiva/patología , Citocinas/metabolismo , Fluoresceína/metabolismo , Hipocampo/metabolismo , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL
17.
Sci Adv ; 8(33): eabn9134, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35984878

RESUMEN

Recent data demonstrate that noradrenergic neurons of the locus coeruleus (LC-NE) are required for fear-induced suppression of feeding, but the role of endogenous LC-NE activity in natural, homeostatic feeding remains unclear. Here, we found that LC-NE activity was suppressed during food consumption, and the magnitude of this neural response was attenuated as mice consumed more pellets throughout the session, suggesting that LC responses to food are modulated by satiety state. Visual-evoked LC-NE activity was also attenuated in sated mice, suggesting that satiety state modulates LC-NE encoding of multiple behavioral states. We also found that food intake could be attenuated by brief or longer durations of LC-NE activation. Last, we found that activation of the LC to the lateral hypothalamus pathway suppresses feeding and enhances avoidance and anxiety-like responding. Our findings suggest that LC-NE neurons modulate feeding by integrating both external cues (e.g., anxiogenic environmental cues) and internal drives (e.g., satiety).

18.
JNCI Cancer Spectr ; 5(1)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33554038

RESUMEN

Background: Human leukocyte antigen class 1 (HLA-1)-dependent immune activity is linked to autoimmune diseases. HLA-1-dependent CD8+ T cells are required for immune checkpoint blockade antitumor activity. It is unknown if HLA-1 genotype is predictive of toxicity to immune checkpoint blockade. Methods: Patients with advanced solid tumors stratified into 5 cohorts received single agent pembrolizumab (anti-programmed cell death-1) 200 mg intravenously every 3 weeks in an investigator-initiated phase II trial (Investigator-Initiated Phase II Study of Pembrolizumab Immunological Response Evaluation study, NCT02644369). Germline whole-exome sequencing of peripheral blood mononuclear cells was performed using the Illumina HiSeq2500 platform. HLA-1 haplotypes were predicted from whole-exome sequencing using HLAminer and HLAVBSeq. Heterozygosity of HLA-A, -B, and -C, individual HLA-1 alleles, and HLA haplotype dimorphism at positions -21 M and -21 T of the HLA-A and -B leader sequence were analyzed as predictors of toxicity defined as grade 2 or greater immune-related adverse events and clinical benefit defined as complete or partial response, or stable disease for 6 or more cycles of pembrolizumab. Statistical significance tests were 2-sided. Results: In the overall cohort of 101 patients, the frequency of toxicity and clinical benefit from pembrolizumab was 22.8% and 25.7%, respectively. There was no association between any of the HLA-1 loci or alleles with toxicity. HLA-C heterozygosity had an association with decreased clinical benefit relative to HLA-C homozygosity when controlling for cohort (odds ratio = 0.28, 95% confidence interval = 0.09 to 0.91, P = .04). HLA-A and -B haplotype -21 M/T dimorphism and heterozygosity of HLA-A, -B, and -C were not predictive of outcomes. Conclusions: HLA-C heterozygosity may predict decreased response to pembrolizumab. Prospective validation is required.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Leucocitos Mononucleares , Neoplasias/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/efectos adversos , Femenino , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Heterocigoto , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Masculino , Persona de Mediana Edad , Neoplasias/genética , Neoplasias/inmunología , Secuenciación del Exoma/métodos , Adulto Joven
19.
Front Neuroanat ; 14: 58, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013329

RESUMEN

The key driver of breathing rhythm is the preBötzinger Complex (preBötC) whose activity is modulated by various functional inputs, e.g., volitional, physiological, and emotional. While the preBötC is highly interconnected with other regions of the breathing central pattern generator (bCPG) in the brainstem, there is no data about the direct projections to either excitatory and inhibitory preBötC subpopulations from other elements of the bCPG or from suprapontine regions. Using modified rabies tracing, we identified neurons throughout the brain that send monosynaptic projections to identified excitatory and inhibitory preBötC neurons in mice. Within the brainstem, neurons from sites in the bCPG, including the contralateral preBötC, Bötzinger Complex, the nucleus of the solitary tract (NTS), parafacial region (pF L /pF V ), and parabrachial nuclei (PB), send direct projections to both excitatory and inhibitory preBötC neurons. Suprapontine inputs to the excitatory and inhibitory preBötC neurons include the superior colliculus, red nucleus, amygdala, hypothalamus, and cortex; these projections represent potential direct pathways for volitional, emotional, and physiological control of breathing.

20.
Stem Cell Reports ; 14(4): 730-743, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32243844

RESUMEN

Yes-associated protein (YAP) is known to promote the stemness of multiple stem cell types, including pluripotent stem cells, while also antagonizing pluripotency during early embryogenesis. How YAP accomplishes these distinct functions remains unclear. Here, we report that, depending on the specific cells in which it is expressed, YAP could exhibit opposing effects on pluripotency induction from mouse somatic cells. Specifically, YAP inhibits pluripotency induction cell-autonomously but promotes it non-cell-autonomously. For its non-cell-autonomous role, YAP alters the expression of many secreted and matricellular proteins, including CYR61. YAP's non-cell-autonomous promoting effect could be recapitulated by recombinant CYR61 and abrogated by CYR61 depletion. Thus, we define a YAP-driven effect on enhancing pluripotency induction largely mediated by CYR61. Our work highlights the importance of considering the distinct contributions from heterologous cell types in deciphering cell fate control mechanisms and calls for careful re-examination of the co-existing bystander cells in complex cultures and tissues.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Células Cultivadas , Proteína 61 Rica en Cisteína/metabolismo , Citocinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Unión Proteica , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA