Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Pharmacol ; 94(2): 917-925, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29903751

RESUMEN

Deletion of phenylalanine at position 508 (F508del) in cystic fibrosis transmembrane conductance regulator (CFTR) is the most common cystic fibrosis (CF)-causing mutation. Recently, ORKAMBI, a combination therapy that includes a corrector of the processing defect of F508del-CFTR (lumacaftor or VX-809) and a potentiator of channel activity (ivacaftor or VX-770), was approved for CF patients homozygous for this mutation. However, clinical studies revealed that the effect of ORKAMBI on lung function is modest and it was proposed that this modest effect relates to a negative impact of VX-770 on the stability of F508del-CFTR. In the current studies, we showed that this negative effect of VX-770 at 10 µM correlated with its inhibitory effect on VX-809-mediated correction of the interface between the second membrane spanning domain and the first nucleotide binding domain bearing F508del. Interestingly, we found that VX-770 exerted a similar negative effect on the stability of other membrane localized solute carriers (SLC26A3, SLC26A9, and SLC6A14), suggesting that this negative effect is not specific for F508del-CFTR. We determined that the relative destabilizing effect of a panel of VX-770 derivatives on F508del-CFTR correlated with their predicted lipophilicity. Polarized total internal reflection fluorescence microscopy on a supported lipid bilayer model shows that VX-770, and not its less lipophilic derivative, increased the fluidity of and reorganized the membrane. In summary, our findings show that there is a potential for nonspecific effects of VX-770 on the lipid bilayer and suggest that this effect may account for its destabilizing effect on VX-809- rescued F508del-CFTR.


Asunto(s)
Aminofenoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Fibrosis Quística/genética , Quinolonas/farmacología , Transportadores de Sulfato/química , Aminofenoles/química , Aminopiridinas/farmacología , Benzodioxoles/farmacología , Línea Celular , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Liofilización , Células HEK293 , Humanos , Microscopía Fluorescente , Mutación , Estabilidad Proteica/efectos de los fármacos , Quinolonas/química
2.
J Biol Chem ; 292(5): 1988-1999, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28003367

RESUMEN

Cystic fibrosis transmembrane conductance regulator (CFTR) is a multidomain membrane protein that functions as a phosphorylation-regulated anion channel. The interface between its two cytosolic nucleotide binding domains and coupling helices conferred by intracellular loops extending from the channel pore domains has been referred to as a transmission interface and is thought to be critical for the regulated channel activity of CFTR. Phosphorylation of the regulatory domain of CFTR by protein kinase A (PKA) is required for its channel activity. However, it was unclear if phosphorylation modifies the transmission interface. Here, we studied purified full-length CFTR protein using spectroscopic techniques to determine the consequences of PKA-mediated phosphorylation. Synchrotron radiation circular dichroism spectroscopy confirmed that purified full-length wild-type CFTR is folded and structurally responsive to phosphorylation. Intrinsic tryptophan fluorescence studies of CFTR showed that phosphorylation reduced iodide-mediated quenching, consistent with an effect of phosphorylation in burying tryptophans at the transmission interface. Importantly, the rate of phosphorylation-dependent channel activation was compromised by the introduction of disease-causing mutations in either of the two coupling helices predicted to interact with nucleotide binding domain 1 at the interface. Together, these results suggest that phosphorylation modifies the interface between the catalytic and pore domains of CFTR and that this modification facilitates CFTR channel activation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Mutación Missense , Sustitución de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células HEK293 , Humanos , Fosforilación/genética , Dominios Proteicos
3.
J Exp Med ; 219(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-34928315

RESUMEN

In the mouse, the first hematopoietic cells are generated in the yolk sac from the primitive, erythro-myeloid progenitor (EMP) and lymphoid programs that are specified before the emergence of hematopoietic stem cells. While many of the yolk sac-derived populations are transient, specific immune cell progeny seed developing tissues, where they function into adult life. To access the human equivalent of these lineages, we modeled yolk sac hematopoietic development using pluripotent stem cell differentiation. Here, we show that the combination of Activin A, BMP4, and FGF2 induces a population of KDR+CD235a/b+ mesoderm that gives rise to the spectrum of erythroid, myeloid, and T lymphoid lineages characteristic of the mouse yolk sac hematopoietic programs, including the Vδ2+ subset of γ/δ T cells that develops early in the human embryo. Through clonal analyses, we identified a multipotent hematopoietic progenitor with erythroid, myeloid, and T lymphoid potential, suggesting that the yolk sac EMP and lymphoid lineages may develop from a common progenitor.


Asunto(s)
Hematopoyesis , Modelos Biológicos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Saco Vitelino/citología , Animales , Biomarcadores , Diferenciación Celular/genética , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunofenotipificación , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismo , Linfopoyesis/genética , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
4.
Cell Stem Cell ; 29(9): 1382-1401.e8, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055193

RESUMEN

The cardiomyocyte (CM) subtypes in the mammalian heart derive from distinct lineages known as the first heart field (FHF), the anterior second heart field (aSHF), and the posterior second heart field (pSHF) lineages that are specified during gastrulation. We modeled human heart field development from human pluripotent stem cells (hPSCs) by using single-cell RNA-sequencing to delineate lineage specification and progression. Analyses of hPSC-derived and mouse mesoderm transcriptomes enabled the identification of distinct human FHF, aSHF, and pSHF mesoderm subpopulations. Through staged manipulation of signaling pathways identified from transcriptomics, we generated myocyte populations that display molecular characteristics of key CM subtypes. The developmental trajectory of the human cardiac lineages recapitulated that of the mouse, demonstrating conserved cardiovascular programs. These findings establish a comprehensive landscape of human embryonic cardiogenesis that provides access to a broad spectrum of cardiomyocytes for modeling congenital heart diseases and chamber-specific cardiomyopathies as well as for developing new therapies to treat them.


Asunto(s)
Células Madre Pluripotentes , Animales , Diferenciación Celular , Embrión de Mamíferos , Humanos , Mamíferos , Mesodermo , Ratones , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo
5.
Cell Stem Cell ; 28(1): 96-111.e7, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33142114

RESUMEN

The embryonic endocardium is essential for early heart development as it functions to induce trabecular myocardium, the first heart tissue to form, and is the source of the cells that make up the valves and a portion of the coronary vasculature. With this potential, human endocardial cells could provide unique therapeutic opportunities that include engineering biological valves and cell-based therapy strategies to replace coronary vasculature in damaged hearts. To access human endocardial cells, we generated a human pluripotent stem cell (hPSC)-derived endothelial population that displays many characteristics of endocardium, including expression of the cohort of genes that identifies this lineage in vivo, the capacity to induce a trabecular fate in immature cardiomyocytes in vitro, and the ability to undergo an endothelial-to-mesenchymal transition. Analyses of the signaling pathways required for development of the hPSC-derived endocardial cells identified a novel role for BMP10 in the specification of this lineage from cardiovascular mesoderm.


Asunto(s)
Endocardio , Células Madre Pluripotentes , Proteínas Morfogenéticas Óseas , Diferenciación Celular , Humanos , Miocardio , Transducción de Señal
6.
Nat Commun ; 12(1): 6504, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764255

RESUMEN

The derivation of mature functional cholangiocytes from human pluripotent stem cells (hPSCs) provides a model for studying the pathogenesis of cholangiopathies and for developing therapies to treat them. Current differentiation protocols are not efficient and give rise to cholangiocytes that are not fully mature, limiting their therapeutic applications. Here, we generate functional hPSC-derived cholangiocytes that display many characteristics of mature bile duct cells including high levels of cystic fibrosis transmembrane conductance regulator (CFTR) and the presence of primary cilia capable of sensing flow. With this level of maturation, these cholangiocytes are amenable for testing the efficacy of cystic fibrosis drugs and for studying the role of cilia in cholangiocyte development and function. Transplantation studies show that the mature cholangiocytes generate ductal structures in the liver of immunocompromised mice indicating that it may be possible to develop cell-based therapies to restore bile duct function in patients with biliary disease.


Asunto(s)
Enfermedades de los Conductos Biliares/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/fisiología , Biología Evolutiva , Células Epiteliales/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes/citología
7.
Nat Commun ; 12(1): 3155, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039977

RESUMEN

Compact cardiomyocytes that make up the ventricular wall of the adult heart represent an important therapeutic target population for modeling and treating cardiovascular diseases. Here, we established a differentiation strategy that promotes the specification, proliferation and maturation of compact ventricular cardiomyocytes from human pluripotent stem cells (hPSCs). The cardiomyocytes generated under these conditions display the ability to use fatty acids as an energy source, a high mitochondrial mass, well-defined sarcomere structures and enhanced contraction force. These ventricular cells undergo metabolic changes indicative of those associated with heart failure when challenged in vitro with pathological stimuli and were found to generate grafts consisting of more mature cells than those derived from immature cardiomyocytes following transplantation into infarcted rat hearts. hPSC-derived atrial cardiomyocytes also responded to the maturation cues identified in this study, indicating that the approach is broadly applicable to different subtypes of the heart. Collectively, these findings highlight the power of recapitulating key aspects of embryonic and postnatal development for generating therapeutically relevant cell types from hPSCs.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Insuficiencia Cardíaca/terapia , Infarto del Miocardio/terapia , Miocitos Cardíacos/trasplante , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Modelos Animales de Enfermedad , Embrión de Mamíferos , Desarrollo Embrionario/fisiología , Atrios Cardíacos/citología , Atrios Cardíacos/embriología , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/patología , Humanos , Infarto del Miocardio/complicaciones , Infarto del Miocardio/patología , Miocitos Cardíacos/fisiología , Ratas
8.
Front Plant Sci ; 7: 1822, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27965705

RESUMEN

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat in China. Rapid change to virulence following release of resistant cultivars necessitates ongoing discovery and exploitation of new resistance resources. Considerable effort has been directed at non-host resistance (NHR) which is believed to be durable. In the present study we identified rice mutant crr1 (compromised resistance to rust 1) that exhibited compromised NHR to Pst. Compared with wild type rice variety Nipponbare, crr1 mutant displayed a threefold increase in penetration rate by Pst, and enhanced hyphal growth. The pathogen also developed haustoria in crr1 mesophyll cells, but failed to sporulate. The response to the adapted rice pathogen Magnaporthe oryzae was unchanged in crr1 relative to the wild type. Several defense-related genes involved in the SA- and JA-mediated defense pathways response and in phytoalexin synthesis (such as OsPR1a, OsLOX1, and OsCPS4) were more rapidly and strongly induced in infected crr1 leaves than in the wild type, suggesting that other layers of defense are still in effect. Genetic analysis and mapping located the mutant loci at a region between markers ID14 and RM25792, which cover about 290 kb genome sequence on chromosome 10. Further fine mapping and cloning of the locus should provide further insights into NHR to rust fungi in rice, and may reveal new strategies for improving rust resistance in wheat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA