Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circulation ; 128(11 Suppl 1): S59-68, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24030422

RESUMEN

BACKGROUND: Endothelial progenitor cells (EPCs) possess robust therapeutic angiogenic potential, yet may be limited in the capacity to develop into fully mature vasculature. This problem might be exacerbated by the absence of a neovascular foundation, namely pericytes, with simple EPC injection. We hypothesized that coculturing EPCs with smooth muscle cells (SMCs), components of the surrounding vascular wall, in a cell sheet will mimic the native spatial orientation and interaction between EPCs and SMCs to create a supratherapeutic angiogenic construct in a model of ischemic cardiomyopathy. METHODS AND RESULTS: Primary EPCs and SMCs were isolated from Wistar rats. Confluent SMCs topped with confluent EPCs were spontaneously detached from the Upcell dish to create an SMC-EPC bi-level cell sheet. A rodent ischemic cardiomyopathy model was created by ligating the left anterior descending coronary artery. Rats were then immediately divided into 3 groups: cell-sheet transplantation (n=14), cell injection (n=12), and no treatment (n=13). Cocultured EPCs and SMCs stimulated an abundant release of multiple cytokines in vitro. Increased capillary density and improved blood perfusion in the borderzone elucidated the significant in vivo angiogenic potential of this technology. Most interestingly, however, cell fate-tracking experiments demonstrated that the cell-sheet EPCs and SMCs directly migrated into the myocardium and differentiated into elements of newly formed functional vasculature. The robust angiogenic effect of this cell sheet translated to enhanced ventricular function as demonstrated by echocardiography. CONCLUSIONS: Spatially arranged EPC-SMC bi-level cell-sheet technology facilitated the natural interaction between EPCs and SMCs, thereby creating structurally mature, functional microvasculature in a rodent ischemic cardiomyopathy model, leading to improved myocardial function.


Asunto(s)
Endotelio Vascular/fisiología , Isquemia Miocárdica/patología , Miocitos del Músculo Liso/fisiología , Neovascularización Patológica/patología , Células Madre/fisiología , Animales , Técnicas de Cocultivo , Endotelio Vascular/patología , Femenino , Humanos , Masculino , Ratas , Ratas Wistar , Células Madre/patología , Factores de Tiempo
2.
Circulation ; 124(11 Suppl): S18-26, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21911811

RESUMEN

BACKGROUND: Experimentally, exogenous administration of recombinant stromal cell-derived factor-1α (SDF) enhances neovasculogenesis and cardiac function after myocardial infarction. Smaller analogs of SDF may provide translational advantages including enhanced stability and function, ease of synthesis, lower cost, and potential modulated delivery via engineered biomaterials. In this study, computational protein design was used to create a more efficient evolution of the native SDF protein. METHODS AND RESULTS: Protein structure modeling was used to engineer an SDF polypeptide analog (engineered SDF analog [ESA]) that splices the N-terminus (activation and binding) and C-terminus (extracellular stabilization) with a diproline segment designed to limit the conformational flexibility of the peptide backbone and retain the relative orientation of these segments observed in the native structure of SDF. Endothelial progenitor cells (EPCs) in ESA gradient, assayed by Boyden chamber, showed significantly increased migration compared with both SDF and control gradients. EPC receptor activation was evaluated by quantification of phosphorylated AKT, and cells treated with ESA yielded significantly greater phosphorylated AKT levels than SDF and control cells. Angiogenic growth factor assays revealed a distinct increase in angiopoietin-1 expression in the ESA- and SDF-treated hearts. In addition, CD-1 mice (n=30) underwent ligation of the left anterior descending coronary artery and peri-infarct intramyocardial injection of ESA, SDF-1α, or saline. At 2 weeks, echocardiography demonstrated a significant gain in ejection fraction, cardiac output, stroke volume, and fractional area change in mice treated with ESA compared with controls. CONCLUSIONS: Compared with native SDF, a novel engineered SDF polypeptide analog (ESA) more efficiently induces EPC migration and improves post-myocardial infarction cardiac function and thus offers a more clinically translatable neovasculogenic therapy.


Asunto(s)
Proteínas Angiogénicas/química , Proteínas Angiogénicas/farmacología , Quimiocina CXCL12/química , Quimiocina CXCL12/farmacología , Biología Computacional/métodos , Neovascularización Fisiológica/efectos de los fármacos , Ingeniería de Proteínas/métodos , Proteínas Angiogénicas/uso terapéutico , Animales , Gasto Cardíaco/efectos de los fármacos , Gasto Cardíaco/fisiología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Células Cultivadas , Quimiocina CXCL12/uso terapéutico , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/fisiología , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos , Modelos Animales , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/prevención & control , Neovascularización Fisiológica/fisiología , Ratas , Ratas Wistar , Células Madre/citología , Células Madre/efectos de los fármacos , Volumen Sistólico/efectos de los fármacos , Volumen Sistólico/fisiología
3.
J Biomed Mater Res A ; 100(5): 1356-67, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22374788

RESUMEN

Regenerative medicine approaches offer attractive alternatives to standard vascular reconstruction; however, the biomaterials to be used must have optimal biochemical and mechanical properties. To evaluate the effects of biomaterial properties on vascular cells, heparinized poly(ethylene glycol) (PEG)-based hydrogels of three different moduli, 13.7, 5.2, and 0.3 kPa, containing fibronectin and growth factor were utilized to support the growth of three human vascular cell types. The cell types exhibited differences in attachment, proliferation, and gene expression profiles associated with the hydrogel modulus. Human vascular smooth muscle cells demonstrated preferential attachment on the highest-modulus hydrogel, adventitial fibroblasts demonstrated preferential growth on the highest-modulus hydrogel, and human umbilical vein endothelial cells demonstrated preferential growth on the lowest-modulus hydrogel investigated. Our studies suggest that the growth of multiple vascular cell types can be supported by PEG hydrogels and that different populations can be controlled by altering the mechanical properties of biomaterials.


Asunto(s)
Módulo de Elasticidad/efectos de los fármacos , Fibroblastos/citología , Células Endoteliales de la Vena Umbilical Humana/citología , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Miocitos del Músculo Liso/citología , Animales , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Análisis por Conglomerados , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Células 3T3 NIH , Oscilometría , Reología/efectos de los fármacos
4.
Tissue Eng Part A ; 18(23-24): 2497-506, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22724901

RESUMEN

Hyaluronic acid (HA) is an extracellular matrix molecule with multiple physical and biological functions found in many tissues, including cartilage. HA has been incorporated in a number of biomaterial and scaffold systems. However, HA in the material may be difficult to control if it is not chemically modified and chemical modification of HA may negatively impact biological function. In this study, we developed a poly(ethylene glycol) hydrogel with noncovalent HA-binding capabilities and evaluated its ability to support cartilage formation in vitro and in an articular defect model. Chondrogenic differentiation of mesenchymal stem cells encapsulated in the HA-interactive scaffolds containing various amounts of exogenous HA was evaluated. The HA-binding hydrogel without exogenous HA produced the best cartilage as determined by biochemical content (glysocaminoglycan and collagen), histology (Safranin O and type II collagen staining), and gene expression analysis for aggrecan, type I collagen, type II collagen, and sox-9. This HA-binding formulation was then translated to an osteochondral defect model in the rat knee. After 6 weeks, histological analysis demonstrated improved cartilage tissue production in defects treated with the HA-interactive hydrogel compared to noninteractive control scaffolds and untreated defects. In addition to the tissue repair in the defect space, the Safranin O staining in cartilage tissue surrounding the defect was greater in treatment groups where the HA-binding scaffold was applied. In sum, incorporation of a noncovalent HA-binding functionality into biomaterials provides an ability to interact with local or exogenous HA, which can then impact tissue remodeling and ultimately new tissue production.


Asunto(s)
Materiales Biocompatibles/química , Cartílago Articular/cirugía , Fémur/cirugía , Ácido Hialurónico/metabolismo , Células Madre Mesenquimatosas/citología , Oligopéptidos/metabolismo , Polietilenglicoles/metabolismo , Andamios del Tejido/química , Secuencia de Aminoácidos , Animales , Cartílago Articular/lesiones , Condrogénesis , Colágeno/biosíntesis , Cámaras de Difusión de Cultivos , Proteínas de la Matriz Extracelular/biosíntesis , Proteínas de la Matriz Extracelular/genética , Fémur/lesiones , Glicosaminoglicanos/biosíntesis , Cabras , Hidrogeles , Masculino , Ensayo de Materiales , Células Madre Mesenquimatosas/metabolismo , Datos de Secuencia Molecular , Oligopéptidos/síntesis química , Oligopéptidos/química , Ratas , Ratas Sprague-Dawley
5.
J Thorac Cardiovasc Surg ; 143(4): 962-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22264415

RESUMEN

OBJECTIVES: Ventricular remodeling after myocardial infarction begins with massive extracellular matrix deposition and resultant fibrosis. This loss of functional tissue and stiffening of myocardial elastic and contractile elements starts the vicious cycle of mechanical inefficiency, adverse remodeling, and eventual heart failure. We hypothesized that stromal cell-derived factor 1α (SDF-1α) therapy to microrevascularize ischemic myocardium would rescue salvageable peri-infarct tissue and subsequently improve myocardial elasticity. METHODS: Immediately after left anterior descending coronary artery ligation, mice were randomly assigned to receive peri-infarct injection of either saline solution or SDF-1α. After 6 weeks, animals were killed and samples were taken from the peri-infarct border zone and the infarct scar, as well as from the left ventricle of noninfarcted control mice. Determination of tissues' elastic moduli was carried out by mechanical testing in an atomic force microscope. RESULTS: SDF-1α-treated peri-infarct tissue most closely approximated the elasticity of normal ventricle and was significantly more elastic than saline-treated peri-infarct myocardium (109 ± 22.9 kPa vs 295 ± 42.3 kPa; P < .0001). Myocardial scar, the strength of which depends on matrix deposition from vasculature at the peri-infarct edge, was stiffer in SDF-1α-treated animals than in controls (804 ± 102.2 kPa vs 144 ± 27.5 kPa; P < .0001). CONCLUSIONS: Direct quantification of myocardial elastic properties demonstrates the ability of SDF-1α to re-engineer evolving myocardial infarct and peri-infarct tissues. By increasing elasticity of the ischemic and dysfunctional peri-infarct border zone and bolstering the weak, aneurysm-prone scar, SDF-1α therapy may confer a mechanical advantage to resist adverse remodeling after infarction.


Asunto(s)
Inductores de la Angiogénesis/farmacología , Quimiocina CXCL12/farmacología , Diagnóstico por Imagen de Elasticidad/métodos , Ventrículos Cardíacos/efectos de los fármacos , Microscopía de Fuerza Atómica , Infarto del Miocardio/tratamiento farmacológico , Miocardio/patología , Neovascularización Fisiológica/efectos de los fármacos , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Módulo de Elasticidad , Fibrosis , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Masculino , Ratones , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Factores de Tiempo , Remodelación Ventricular/efectos de los fármacos
6.
J Appl Physiol (1985) ; 110(5): 1460-5, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21292844

RESUMEN

This study evaluates a therapy for infarct modulation and acute myocardial rescue and utilizes a novel technique to measure local myocardial oxygenation in vivo. Bone marrow-derived endothelial progenitor cells (EPCs) were targeted to the heart with peri-infarct intramyocardial injection of the potent EPC chemokine stromal cell-derived factor 1α (SDF). Myocardial oxygen pressure was assessed using a noninvasive, real-time optical technique for measuring oxygen pressures within microvasculature based on the oxygen-dependent quenching of the phosphorescence of Oxyphor G3. Myocardial infarction was induced in male Wistar rats (n = 15) through left anterior descending coronary artery ligation. At the time of infarction, animals were randomized into two groups: saline control (n = 8) and treatment with SDF (n = 7). After 48 h, the animals underwent repeat thoracotomy and 20 µl of the phosphor Oxyphor G3 was injected into three areas (peri-infarct myocardium, myocardial scar, and remote left hindlimb muscle). Measurements of the oxygen distribution within the tissue were then made in vivo by applying the end of a light guide to the beating heart. Compared with controls, animals in the SDF group exhibited a significantly decreased percentage of hypoxic (defined as oxygen pressure ≤ 15.0 Torr) peri-infarct myocardium (9.7 ± 6.7% vs. 21.8 ± 11.9%, P = 0.017). The peak oxygen pressures in the peri-infarct region of the animals in the SDF group were significantly higher than the saline controls (39.5 ± 36.7 vs. 9.2 ± 8.6 Torr, P = 0.02). This strategy for targeting EPCs to vulnerable peri-infarct myocardium via the potent chemokine SDF-1α significantly decreased the degree of hypoxia in peri-infarct myocardium as measured in vivo by phosphorescence quenching. This effect could potentially mitigate the vicious cycle of myocyte death, myocardial fibrosis, progressive ventricular dilatation, and eventual heart failure seen after acute myocardial infarction.


Asunto(s)
Quimiocina CXCL12/uso terapéutico , Mediciones Luminiscentes/métodos , Metaloporfirinas/farmacocinética , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Oxígeno/metabolismo , Inductores de la Angiogénesis/uso terapéutico , Animales , Masculino , Infarto del Miocardio/patología , Ratas , Ratas Wistar , Distribución Tisular , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA