Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 20(1): e1011956, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38295116

RESUMEN

Viral infection is a significant risk factor for fertility issues. Here, we demonstrated that infection by neurotropic alphaherpesviruses, such as pseudorabies virus (PRV), could impair female fertility by disrupting the hypothalamus-pituitary-ovary axis (HPOA), reducing progesterone (P4) levels, and consequently lowering pregnancy rates. Our study revealed that PRV exploited the transient receptor potential mucolipin 1 (TRPML1) and its lipid activator, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), to facilitate viral entry through lysosomal cholesterol and Ca2+. P4 antagonized this process by inducing lysosomal storage disorders and promoting the proteasomal degradation of TRPML1 via murine double minute 2 (MDM2)-mediated polyubiquitination. Overall, the study identifies a novel mechanism by which PRV hijacks the lysosomal pathway to evade P4-mediated antiviral defense and impair female fertility. This mechanism may be common among alphaherpesviruses and could contribute significantly to their impact on female reproductive health, providing new insights for the development of antiviral therapies.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Femenino , Ratones , Animales , Herpesvirus Suido 1/fisiología , Progesterona/farmacología , Progesterona/metabolismo , Internalización del Virus , Lisosomas/metabolismo , Antivirales/metabolismo , Seudorrabia/metabolismo
2.
PLoS Pathog ; 20(4): e1012123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38607975

RESUMEN

RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.


Asunto(s)
Autofagia Mediada por Chaperones , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Lipólisis , Regulación hacia Arriba , Proteínas de Unión al GTP rab/genética , Proteínas de Membrana de los Lisosomas , ARN Interferente Pequeño
3.
J Virol ; 98(1): e0166423, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38054618

RESUMEN

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease in pigs. The low-density lipoprotein receptor (LDLR) is a transcriptional target of the sterol-regulatory element-binding proteins (SREBPs) and participates in the uptake of LDL-derived cholesterol. However, the involvement of LDLR in PRV infection has not been well characterized. We observed an increased expression level of LDLR mRNA in PRV-infected 3D4/21, PK-15, HeLa, RAW264.7, and L929 cells. The LDLR protein level was also upregulated by PRV infection in PK-15 cells and in murine lung and brain. The treatment of cells with the SREBP inhibitor, fatostatin, or with SREBP2-specific small interfering RNA prevented the PRV-induced upregulation of LDLR expression as well as viral protein expression and progeny virus production. This suggested that PRV activated SREBPs to induce LDLR expression. Furthermore, interference in LDLR expression affected PRV proliferation, while LDLR overexpression promoted it. This indicated that LDLR was involved in PRV infection. The study also demonstrated that LDLR participated in PRV invasions. The overexpression of LDLR or inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to LDLR and targets it for lysosomal degradation, significantly enhanced PRV attachment and entry. Mechanistically, LDLR interacted with PRV on the plasma membrane, and pretreatment of cells with LDLR antibodies was able to neutralize viral entry. An in vivo study indicated that the treatment of mice with the PCSK9 inhibitor SBC-115076 promoted PRV proliferation. The data from the study indicate that PRV hijacks LDLR for viral entry through the activation of SREBPs.IMPORTANCEPseudorabies virus (PRV) is a herpesvirus that primarily manifests as fever, pruritus, and encephalomyelitis in various domestic and wild animals. Owing to its lifelong latent infection characteristics, PRV outbreaks have led to significant financial setbacks in the global pig industry. There is evidence that PRV variant strains can infect humans, thereby crossing the species barrier. Therefore, gaining deeper insights into PRV pathogenesis and developing updated strategies to contain its spread are critical. This study posits that the low-density lipoprotein receptor (LDLR) could be a co-receptor for PRV infection. Hence, strategies targeting LDLR may provide a promising avenue for the development of effective PRV vaccines and therapeutic interventions.


Asunto(s)
Herpesvirus Suido 1 , Lipoproteínas LDL , Seudorrabia , Enfermedades de los Porcinos , Animales , Humanos , Ratones , Herpesvirus Suido 1/fisiología , Lipoproteínas LDL/metabolismo , Proproteína Convertasa 9 , Seudorrabia/virología , Porcinos , Enfermedades de los Porcinos/virología , Internalización del Virus , Línea Celular
4.
J Am Chem Soc ; 146(18): 12734-12742, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38592928

RESUMEN

Innovative surface-protecting ligands are in constant demand due to their crucial role in shaping the configuration, property, and application of gold nanoclusters. Here, the unprecedented O-ethyl dithiocarbonate (DTX)-stabilized atomically precise gold nanoclusters, [Au25(PPh3)10(DTX)5Cl2]2+ (Au25DTX-Cl) and [Au25(PPh3)10(DTX)5Br2]2+ (Au25DTX-Br), were synthesized and structurally characterized. The introduction of bidentate DTX ligands not only endowed the gold nanocluster with unique staggered Au25 nanorod configurations but also generated the symmetry breaking from the D5d geometry of the Au25 kernels to the chiral D5 configuration of the Au25 molecules. The chirality of Au25 nanorods was notably revealed through single-crystal X-ray diffraction, and chiral separation was induced by employing chiral DTX ligands. The staggered configurations of Au25 nanorods, as opposed to eclipsed ones, were responsible for the large red shift in the emission wavelengths, giving rise to a promising near-infrared II (NIR-II, >1000 nm) phosphorescence. Furthermore, their performances in photocatalytic sulfide oxidation and electrocatalytic hydrogen evolution reactions have been examined, and it has been demonstrated that the outstanding catalytic activity of gold nanoclusters is highly related to their stability.

5.
J Virol ; 97(6): e0041223, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37255475

RESUMEN

Pseudorabies virus (PRV) is a double-stranded DNA virus that causes Aujeszky's disease and is responsible for economic loss worldwide. Transmembrane protein 41B (TMEM41B) is a novel endoplasmic reticulum (ER)-localized regulator of autophagosome biogenesis and lipid mobilization; however, the role of TMEM41B in regulating PRV replication remains undocumented. In this study, PRV infection was found to upregulate TMEM41B mRNA and protein levels both in vitro and in vivo. For the first time, we found that TMEM41B could be induced by interferon (IFN), suggesting that TMEM41B is an IFN-stimulated gene (ISG). While TMEM41B knockdown suppressed PRV proliferation, TMEM41B overexpression promoted PRV proliferation. We next studied the specific stages of the virus life cycle and found that TMEM41B knockdown affected PRV entry. Mechanistically, we demonstrated that the knockdown of TMEM41B blocked PRV-stimulated expression of the key enzymes involved in lipid synthesis. Additionally, TMEM41B knockdown played a role in the dynamics of lipid-regulated PRV entry-dependent clathrin-coated pits (CCPs). Lipid replenishment restored the CCP dynamic and PRV entry in TMEM41B knockdown cells. Together, our results indicate that TMEM41B plays a role in PRV infection via regulating lipid homeostasis. IMPORTANCE PRV belongs to the alphaherpesvirus subfamily and can establish and maintain a lifelong latent infection in pigs. As such, an intermittent active cycle presents great challenges to the prevention and control of PRV disease and is responsible for serious economic losses to the pig breeding industry. Studies have shown that lipids play a crucial role in PRV proliferation. Thus, the manipulation of lipid metabolism may represent a new perspective for the prevention and treatment of PRV. In this study, we report that the ER transmembrane protein TMEM41B is a novel ISG involved in PRV infection by regulating lipid synthesis. Therefore, our findings indicate that targeting TMEM41B may be a promising approach for the development of PRV vaccines and therapeutics.


Asunto(s)
Herpesvirus Suido 1 , Proteínas de la Membrana , Seudorrabia , Replicación Viral , Animales , Herpesvirus Suido 1/fisiología , Interferones/metabolismo , Lípidos , Porcinos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
6.
Chemistry ; 30(29): e202400739, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38497677

RESUMEN

A new noncentrosymmetric strontium borate, P1-Sr2[B5O8(OH)]2 ⋅ [B(OH)3] ⋅ H2O (1), has been synthesized under the hydrothermal condition. The P1-Sr2[B5O8(OH)]2 ⋅ [B(OH)3] ⋅ H2O shows a layered B-O network with 9-ring windows in the ab plane. Sr2+ cations, H3BO3, and H2O molecules are located in the voids of layers and interlayers, respectively. The P1-Sr2[B5O8(OH)]2 ⋅ [B(OH)3] ⋅ H2O is the first synthetic phase of veatchite, while the other three polymorphs are found in different natural minerals. This strontium borate is a potential deep-ultraviolet-transparent nonlinear-optical (NLO) crystal whose second-harmonic-generation (SHG) intensity is 1.7 times that of KH2PO4 (KDP) and is phase-matchable. The short wavelength cutoff edge of compound 1 is below 190 nm. Density functional theory (DFT) calculations show that the B-O units are responsible for the nonlinear optical property.

7.
Vet Res ; 55(1): 68, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807225

RESUMEN

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Liberación del Virus , Proteínas de Unión al GTP rab , Animales , Herpesvirus Suido 1/fisiología , Herpesvirus Suido 1/genética , Porcinos , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Ratones , Seudorrabia/virología , Ensamble de Virus/fisiología , Enfermedades de los Porcinos/virología , Línea Celular
8.
Inorg Chem ; 63(20): 9026-9030, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38723292

RESUMEN

Two metal borate-carbonates, M6[Cd2(CO3)2(B12O18)(OH)6] [M = K (1), Rb (2)], were obtained under surfactant-thermal conditions. In 1 and 2, each cyclic [(B12O18)(OH)6]6- anion captures two CdCO3 in two sides of the rings and finally forms the unusual (CdCO3)2@[(B12O18)(OH)6] cluster. Both 1 and 2 show moderate birefringence. Density functional theory calculations indicate that carbonate groups have a major contribution to electron-related optical transition.

9.
Inorg Chem ; 63(2): 1142-1150, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38175800

RESUMEN

It is still challenging to construct novel photochromic and photomagnetic materials in the field of molecular materials. Herein, the 2,4,6-tris-2-pyridyl-1,3,5-triazine (TPTz) molecule was found to display photochromic properties under room temperature light irradiation. Two mononuclear structures, [Ni(H2O)(TPTz)(C2O4)]·2H2O (1; C2O42- = oxalate) [Ni(H2O)(TPTz)(C2O4)]·0.5H2O (2), and one chain compound [Ni(TPTz)(H2-HEDP)]·2H2O (3; HEDP = hydroxyethylidene diphosphonate) were obtained by assembling TPTz with polydentate O-ligands (oxalate and phosphonate) and the paramagnetic Ni2+ ions. The electron-transfer (ET)-dominated photochromism was observable in 1 and 2 after light irradiation with the photogeneration of relatively stable radicals, and the resultant photochromism was demonstrated via UV-vis, photoluminescence, X-ray photoelectron spectra, electron paramagnetic resonance spectra, and molecular orbital calculations. Due to the denser stacking interactions between the adjacent organic molecules, 2 exhibited a faster photochromic rate than 1. Compared with 1 and 2, compound 3 did not show photochromic behavior, which was deciphered by the theoretical calculations for all of the compounds. Importantly, the magnetic couplings appeared between photogenerated radicals and paramagnetic Ni2+ ions, resulting in a scarcely photomagnetic phenomenon of 1 and 2 in the Ni-based electron transfer photochromic materials. This work enriches the available kind of ligands for the design of ET photochromic materials, putting forward a method to tune the electron transfer photochromic efficiency in the molecular materials.

10.
Chem Soc Rev ; 52(14): 4725-4754, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37382597

RESUMEN

The chemistry of polypyridyl Ru(II) and cyclometalated Ir(III) derivatives provides long-lasting interest to researchers due to the inherent advantage of their triplet states in a variety of photoactivities. The introduction of Ru(N^N)3 and Ir(C^N)2(X^N) modules into well-defined architectures extends the research areas of both photoactive metal complexes and network chemistry, generating a lot of new opportunities with interesting structural aesthetics and profound functional possibilities. The rapid development of research in integrating Ru(II) or Ir(III) metallotecons into the architectures has been apparent in recent years which makes this a fascinating subject for reviewing. This review focuses on the design and syntheses of Ru(N^N)3 and Ir(C^N)2(X^N) functionalized architectures of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), metallasupramolecules, organic supramolecules and supramolecular organic frameworks (SOFs). Furthermore, the photocatalytic applications including the hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), photocatalytic oxidation and photoredox catalysis of organic transformation are also presented.

11.
Angew Chem Int Ed Engl ; 63(7): e202317341, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38153620

RESUMEN

The syntheses of atomically precise silver (Ag) clusters stabilized by multidentate lacunary polyoxometalate (POM) ligands have been emerging as a promising but challenging research direction, the combination of redox-active POM ligands and silver clusters will render them unexpected geometric structures and catalytic properties. Herein, we report the successful construction of two structurally-new lacunary POM-stabilized Ag clusters, TBA6 H14 Ag14 (DPPB)4 (CH3 CN)9 [Ag24 (Si2 W18 O66 )3 ] ⋅ 10CH3 CN ⋅ 9H2 O ({Ag24 (Si2 W18 O66 )3 }, TBA=tetra-n-butylammonium, DPPB=1,4-Bis(diphenylphosphino)butane) and TBA14 H6 Ag9 Na2 (H2 O)9 [Ag27 (Si2 W18 O66 )3 ] ⋅ 8CH3 CN ⋅ 10H2 O ({Ag27 (Si2 W18 O66 )3 }), using a facile one-pot solvothermal approach. Under otherwise identical synthetic conditions, the molecular structures of two POM-stabilized Ag clusters could be readily tuned by the addition of different organic ligands. In both compounds, the central trefoil-propeller-shaped {Ag24 }14+ and {Ag27 }17+ clusters bearing 10 delocalized valence electrons are stabilized by three C-shaped {Si2 W18 O66 } units. The femtosecond/nanosecond transient absorption spectroscopy revealed the rapid charge transfer between {Ag24 }14+ core and {Si2 W18 O66 } ligands. Both compounds have been pioneeringly investigated as catalysts for photocatalytic CO2 reduction to HCOOH with a high selectivity.

12.
Mol Genet Genomics ; 298(5): 1121-1133, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37318628

RESUMEN

The regulation of gene expression in mammalian cells by combining various cis-regulatory features has rarely been discussed. In this study, we constructed expression vectors containing various combinations of regulatory elements to examine the regulation of gene expression by different combinations of cis-regulatory elements. The effects of four promoters (CMV promoter, PGK promoter, Polr2a promoter, and EF-1α core promoter), two enhancers (CMV enhancer and SV40 enhancer), two introns (EF-1α intron A and hybrid intron), two terminators (CYC1 terminator and TEF terminator), and their different combinations on downstream gene expression were compared in various mammalian cells using fluorescence microscopy to observe fluorescence, quantitative real-time PCR (qRT-PCR), and western blot. The receptor binding domain (RBD) sequence from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein was used to replace the eGFP sequence in the expression vector and the RBD expression was detected by qRT-PCR and western blot. The results showed that protein expression can be regulated by optimizing the combination of cis-acting elements. The vector with the CMV enhancer, EF-1α core promoter, and TEF terminator was found to express approximately threefold higher eGFP than the unmodified vector in different animal cells, as well as 2.63-fold higher recombinant RBD protein than the original vector in HEK-293T cells. Moreover, we suggest that combinations of multiple regulatory elements capable of regulating gene expression do not necessarily exhibit synergistic effects to enhance expression further. Overall, our findings provide insights into biological applications that require the regulation of gene expression and will help to optimize expression vectors for biosynthesis and other fields. Additionally, we provide valuable insights into the production of RBD proteins, which may aid in developing reagents for diagnosis and treatment during the COVID-19 pandemic.


Asunto(s)
COVID-19 , Infecciones por Citomegalovirus , Animales , Humanos , Vectores Genéticos/genética , Factor 1 de Elongación Peptídica/genética , Pandemias , SARS-CoV-2/genética , Mamíferos/genética , Infecciones por Citomegalovirus/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica
13.
J Med Virol ; 95(3): e28591, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807585

RESUMEN

Proteins UL31 and UL34 encoded by alphaherpesvirus are critical for viral primary envelopment and nuclear egress. We report here that pseudorabies virus (PRV), a useful model for research on herpesvirus pathogenesis, uses N-myc downstream regulated 1 (NDRG1) to assist the nuclear import of UL31 and UL34. PRV promoted NDRG1 expression through DNA damage-induced P53 activation, which was beneficial to viral proliferation. PRV induced the nuclear translocation of NDRG1, and its deficiency resulted in the cytosolic retention of UL31 and UL34. Therefore, NDRG1 assisted the nuclear import of UL31 and UL34. Furthermore, in the absence of the nuclear localization signal (NLS), UL31 could still translocate to the nucleus, and NDRG1 lacked an NLS, thus suggesting the existence of other mediators for the nuclear import of UL31 and UL34. We demonstrated that heat shock cognate protein 70 (HSC70) was the key factor in this process. UL31 and UL34 interacted with the N-terminal domain of NDRG1 and the C-terminal domain of NDRG1 bound to HSC70. Replenishment of HSC70ΔNLS in HSC70-knockdown cells, or interference in importin α expression, abolished the nuclear translocation of UL31, UL34, and NDRG1. These results indicated that NDRG1 employs HSC70 to facilitate viral proliferation in the nuclear import of PRV UL31 and UL34.


Asunto(s)
Herpesvirus Suido 1 , Proteínas Nucleares , Animales , Humanos , Transporte Activo de Núcleo Celular , Proteínas Nucleares/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Núcleo Celular/metabolismo , Herpesvirus Suido 1/genética
14.
Virol J ; 20(1): 264, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37968757

RESUMEN

The porcine pseudorabies virus (PRV) is one of the most devastating pathogens and brings great economic losses to the swine industry worldwide. Viruses are intracellular parasites that have evolved numerous strategies to subvert and utilize different host processes for their life cycle. Among the different systems of the host cell, the cytoskeleton is one of the most important which not only facilitate viral invasion and spread into neighboring cells, but also help viruses to evade the host immune system. RhoA is a key regulator of cytoskeleton system that may participate in virus infection. In this study, we characterized the function of RhoA in the PRV replication by chemical drugs treatment, gene knockdown and gene over-expression strategy. Inhibition of RhoA by specific inhibitor and gene knockdown promoted PRV proliferation. On the contrary, overexpression of RhoA or activation of RhoA by chemical drug inhibited PRV infection. Besides, our data demonstrated that PRV infection induced the disruption of actin stress fiber, which was consistent with previous report. In turn, the actin specific inhibitor cytochalasin D markedly disrupted the normal fibrous structure of intracellular actin cytoskeleton and decreased the PRV replication, suggesting that actin cytoskeleton polymerization contributed to PRV replication in vitro. In summary, our data displayed that RhoA was a host restriction factor that inhibited PRV replication, which may deepen our understanding the pathogenesis of PRV and provide further insight into the prevention of PRV infection and the development of anti-viral drugs.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Porcinos , Animales , Herpesvirus Suido 1/fisiología , Actinas , Línea Celular , Replicación Viral
15.
Inorg Chem ; 62(35): 14163-14167, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37603034

RESUMEN

An acentric aluminoborate (ABO), Na1.5Cs0.5[Al{BO3}{B9O15(OH)3}1/3] (1), has been made under solvothermal conditions. The alternations of AlO4 tetrahedra and BO3 triangles first build up the 2D ABO layer with 6-MR (membered-ring) windows. The fanlike B9O15(OH)3 cluster adorns the layer through Al-O-B linkages, producing a pair of unclosed channels with 7-MR aperture on the lateral side of the layers. The novel B9O15(OH)3 cluster represents the largest oxoboron cluster in the acentric ABO family. 1 not only shows a moderate second-harmonic-generation response of 1.2 times that of potassium dihydrogen phosphate but also has a short cutoff edge below 200 nm, indicating its potential applications in deep-UV regions.

16.
Inorg Chem ; 62(51): 21409-21415, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38048264

RESUMEN

The reaction of [A-α-GeW9O34]10- with Ni2+ in the presence of inorganic boron sources yielded three unprecedented sandwiched Ni-added polyoxometalates (NiAPs): K6Na7H7[({Ni8(µ6-O)(OH)2}@{B3O6(OH)3}2)@(B-α-GeW9O34)2]·16H2O (1), K4Na4H12[({Ni8(µ6-O)}@{B4O8(OH)3}2)@(B-α-GeW9O34)2]·16H2O (2), and K10Na6[({Ni8(µ6-O)}@ {B6O9(OH)5}2)@(B-α-GeW9O34)2]·12H2O (3). The common feature of 1-3 is that a rare double-layered {Ni8}@{Bn}2 (n = 3,4,6) cluster is inlaid in their sandwich belts. The {Ni8} cluster is composed of two cubane {Ni4} clusters by six bridging oxygen atoms and sharing a µ6-O atom. The numbers of boron atoms in the {Ni8}@{Bn}2 (n = 3,4,6) clusters of 1-3 are different, namely, {Ni8}@{B3}2, {Ni8}@{B4}2, and {Ni8}@{B6}2 clusters. To the best of our knowledge, such architectures containing a double-layered {Ni8}@{Bn}2 (n = 3,4,6) cluster in the sandwich belts are the first observed in POM chemistry. Furthermore, 2 was investigated as an efficient heterogeneous catalyst for the Knoevenagel condensation of various aldehydes with malononitrile at room temperature.

17.
Inorg Chem ; 62(23): 9014-9018, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37265251

RESUMEN

A new high-nuclear Ti-oxo-cluster-added poly(polyoxometalate) Cs2Na19H12[(Cs@Ti12O18)@{(A-α-SiW9O34) (P2W15O56)3}]·29H2O (1) has been made by reacting two types of trivacant precursors with TiOSO4 under hydrothermal conditions. The polyoxoanion of 1 contains one Keggin-type [A-α-SiW9O34]10- and three Dawson-type [P2W15O56]12- fragments that synergistically induce the Ti4+ ions to aggregate at vacant sites, resulting in a large {Ti12}-oxo-cluster cavity sealing a Cs+ ion. It is worth noting that the {Ti12} cluster is built by three edge-shared Ti3O13 ({Ti3}1) cores and one corner-shared Ti3O15 ({Ti3}2) core bridged via 6 µ2-O, which has never been seen before in polyoxometalate chemistry. Significantly, 1 represents the first example of [A-α-SiW9O34]10- and [P2W15O56]12- simultaneously participating in making poly(polyoxometalate).

18.
Inorg Chem ; 62(3): 1264-1271, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36608321

RESUMEN

Two acentric aluminoborates (ABOs), [Zn(en)2Al{B5O9(OH)}{BO(OH)2}] (1) and [Cd(en)2AlB5O10]·H2O (2) (en = ethylenediamine), have been solvothermally made. 1 includes a two-dimensional (2D) wavy ABO layer using B5O9(OH) clusters and AlO3{BO(OH)2} groups, in which both units can be regarded as three-connected nodes, and simplifying the ABO layer to a hcb-type network. 2 features an acentric three-dimensional (3D) porous framework with a unique unc-type network constituted by strictly alternating connected B5O10 clusters and AlO4 units. The structural transformation from a 2D layer 1 to a 3D framework 2 was achieved with the elimination of the terminal hydroxyls in layer 1 by adjusting synthetic conditions in the same solvent system. Metal-amine complexes Zn(en)2/Cd(en)2 bond to the inorganic walls and are located in the cavity of frameworks 1 and 2, respectively. Compounds 1 and 2 exhibit large second-harmonic generation (SHG) responses that are 2.2 and 2.7 times those of KH2PO4 (KDP), respectively, which are among the largest powder SHG responses for all deep-ultraviolet (deep-UV) ABOs. The UV-vis diffuse reflectance spectra of 1 and 2 show a wide transparency window below 190 nm. Density functional theory (DFT) calculations indicate that the B-O units and the introduced distorted d10 metal polyhedra played a decisive role in the optical properties of both compounds.


Asunto(s)
Cadmio , Complejos de Coordinación , Cationes , Aminas , Radical Hidroxilo
19.
Inorg Chem ; 62(17): 6688-6695, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074372

RESUMEN

The photoinduced electron-transfer (ET) process plays an irreplaceable role in chemical and biological fields exemplified by enzymatic catalysis, artificial photosystems, solar energy conversion, and so forth. Searching for a new photoinduced ET system is of great importance for the development of functional materials. Herein, a series of host-guest compounds based on a magnesium metal-organic framework (Mg-MOF) as a host and pyridine derivatives as guests have been presented. Notably, strong O-H···N hydrogen bond between the oxygen atom of µ2-H2O and the nitrogen atom of pyridine enables proton delocalization between water molecule and pyridine guest. Despite the absence of photochromic modules in these host-guest compounds, long-lived charge-separated states with distinct color changes can be formed after UV-light irradiation. The substituents in pyridines and the proton delocalization ability between the host and guests have a great influence on their photoinduced ET process to endow the MOF materials with tunable photoinduced charge-separated states.

20.
Inorg Chem ; 62(26): 10291-10297, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37326463

RESUMEN

A novel 40Ni-added germanotungstate, Cs8K14Na3H3{[Ni6(OH)3(H2O)6(B-α-GeW9O34)]2[Ni8(µ6-O)(µ2-OH)2 (µ3-OH)2(H2O)B2O3(OH)2(B-α-GeW9O34)2]}2·84H2O (1), was made by the reaction of the trivacant [A-α-GeW9O34]10- ({GeW9}) precursor with Ni2+ cations and B5O8-, and systematically investigated by Fourier-transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, and powder X-ray diffraction. Single crystal X-ray analysis indicates that the polyoxoanion of 1 is a novel octamer constructed by {Ni6GeW9} and {Ni8(GeW9)2} structural building units via Ni-O═W linkages. The magnetic behavior shows the existence of overall ferromagnetic interactions among the Ni2+ centers in compound 1. Photocatalytic H2 production studies have implied that 1 can work as a heterogeneous catalyst for hydrogen production with decent robustness and recyclability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA