Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Chemistry ; 29(19): e202203831, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36604309

RESUMEN

Photonic disinfection, particularly near-infrared (NIR) light triggered antibacterial, has emerged as a highly promising solution for combating pathogenic microbes due to its spatiotemporal operability, safety, and low cost of apparatus. However, it remains challenging to construct NIR-responsive antibacterial agents with high light-converting efficacy and elucidate synergistic mechanisms. In this work, ultrathin two-dimensional (2D) BiOCl-Bi2 S3 -Cu2 S ternary heterostructures that can efficiently kill drug-resistant bacteria were synthesized by doping 0D Bi2 S3 and Cu2 S nanoparticles in the 2D BiOCl nanosheets via a facile one-pot hydrothermal method. Notably, the incorporation of Cu2 S nanoparticles bestows strong NIR light-harvesting capability to the composite nanosheets due to their localized surface plasmon resonance (LSPR). Upon NIR light illumination, the BiOCl-Bi2 S3 -Cu2 S nanosheets can achieve enhanced photonic hyperthermia and reaction oxygen species (ROS) generation, serving as single light-activated bi-functional photothermal/photodynamic therapeutics. High-speed hot electrons and large local electronic fields caused by LSPR might play an important role in thermal vibrations and effective carrier separations, respectively. Benefiting from the unique ternary heterostructures, both the photothermal conversion and ROS generation efficacy of BiOCl-Bi2 S3 -Cu2 S nanosheets are significantly improved compared to the binary BiOCl-Cu2 S or BiOCl-Bi2 S3 nanosheets. Accordingly, the ternary composite nanosheets can effectively kill bacteria via the NIR-driven photonic disinfection mechanism. This work presents a new type of 2D composite nanosheets with ternary heterostructures for NIR photonic disinfection.


Asunto(s)
Desinfección , Nanopartículas , Especies Reactivas de Oxígeno , Resonancia por Plasmón de Superficie , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias
2.
Phys Chem Chem Phys ; 25(32): 21428-21435, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37538025

RESUMEN

In the marine environment, Na+ ions have been the focus of attention owing to their high content, which is one of the important factors causing marine corrosion. With reference to the content of macro ions in seawater, circular iron samples were semi-immersed in 0.04 M MgCl2 and 0.6 M NaCl solutions containing different proportions of ethanol. Unexpectedly, we observed more severe corrosion effects in the gas phase region and at the gas-liquid interface of metal samples semi-immersed in the MgCl2 solution. Although the concentration of the MgCl2 solution was only 1/15 of that of the NaCl solution, the iron corrosion induced by MgCl2 was significantly more severe than that caused by NaCl when the ethanol content was increased. Mg2+ ions outperform Na+ ions in metal gas phase corrosion. Especially in the oxygen content of the gas phase corrosion product, MgCl2 caused an increase by up to 52.7%, while NaCl only resulted in a 10.3% increase. Ethanol is normally regarded as a corrosion inhibitor and exists in the liquid phase. Interestingly, in the gas phase and at the gas-liquid interface, ethanol aggravated rather than reducing iron corrosion, particularly in the presence of Mg2+ ions. In addition, we observed that Ca2+ ions produced more severe corrosion effects.

3.
Phys Chem Chem Phys ; 24(22): 13848-13859, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616625

RESUMEN

We report distinct molecule-like and lattice (breathing) vibrational signatures of atomically precise, ligand-protected metal clusters using low-temperature Raman spectroscopy. Our measurements provide fingerprint Raman spectra of a series of noble metal clusters, namely, Au25(SR)18, Ag25(SR)18, Ag24Au1(SR)18, Ag29(S2R)12 and Ag44(SR)30 (-SR = alkyl/arylthiolate, -S2R = dithiolate). Distinct, well-defined, low-frequency Raman bands of these clusters result from the vibrations of their metal cores whereas the higher-frequency bands reflect the structure of the metal-ligand interface. We observe a distinct breathing vibrational mode for each of these clusters. Detailed analyses of the bands are presented in the light of DFT calculations. These vibrational signatures change systematically when the metal atoms and/or the ligands are changed. Most importantly, our results show that the physical, lattice dynamics model alone cannot completely describe the vibrational properties of ligand-protected metal clusters. We show that low-frequency Raman spectroscopy is a powerful tool to understand the vibrational dynamics of atomically precise, molecule-like particles of other materials such as molecular nanocarbons, quantum dots, and perovskites.

4.
Angew Chem Int Ed Engl ; 61(43): e202209751, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36066487

RESUMEN

Metal nanoclusters are a unique class of synthetic material, as their crystal structures can be resolved using X-ray diffraction, and their chemical formula can be precisely determinated from mass spectroscopy. However, a complete structure characterization by these two techniques is often a challenging task. Here, we utilize small-angle neutron scattering (SANS) to directly quantify the key structure parameters of a series of silver and gold nanoclusters in solution. The results not only correlate well to their crystallographic structures, but also allow the quantification of the counterions layer surrounding charged nanoclusters in solution. Furthermore, when combining with X-ray scattering, it is possible to estimate the molecular weight of both the metal core and the ligand shell of nanoclusters. This work offers an alternative characterization tool for nanoclusters without the requirement of crystallization or gas phase ionization.

5.
J Am Chem Soc ; 139(45): 16113-16116, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29053274

RESUMEN

A general strategy, using mixed ligands, is utilized to synthesize atomically precise, intrinsically chiral nanocluster [Ag78(DPPP)6(SR)42] (Ag78) where DPPP is the achiral 1,3-bis(diphenyphosphino)propane and SR = SPhCF3. Ag78 crystallizes as racemates in a centric space group. Using chiral diphosphines BDPP = 2,4-bis(diphenylphosphino)pentane, the enantiomeric pair [Ag78(R/S-BDPP)6(SR)42] can be prepared with 100% optical purity. The chiral diphosphines gives rise to, separately, two asymmetric surface coordination motifs composed of tetrahedral R3PAg(SR)3 moieties. The flexible nature of C-C-C angles between the two phosphorus atoms restricts the relative orientation of the tetrahedral R3PAg(SR)3 moieties, thereby resulting in the enantiomeric selection of the intrinsic chiral metal core. This proof-of-concept strategy raises the prospect of enantioselectively synthesizing optically pure, atomically precise chiral noble metal nanoclusters for specific applications.

6.
J Am Chem Soc ; 139(1): 31-34, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-27992210

RESUMEN

Demonstrated herein are the preparation and crystallographic characterization of the family of fcc silver nanoclusters from Nichol's cube to Rubik's cube and beyond via ligand-control (thiolates and phosphines in this case). The basic building block is our previously reported fcc cluster [Ag14(SPhF2)12(PPh3)8] (1). The metal frameworks of [Ag38(SPhF2)26(PR'3)8] (22) and [Ag63(SPhF2)36(PR'3)8]+ (23), where HSPhF2 = 3,4-difluorothiophenol and R' = alkyl/aryl, are composed of 2 × 2 = 4 and 2 × 2 × 2 = 8 metal cubes of 1, respectively. All serial clusters share similar surface structural features. The thiolate ligands cap the six faces and the 12 edges of the cube (or half cube) while the phosphine ligands are terminally bonded to its eight corners. On the basis of the analysis of the crystal structures of 1, 22, and 23, we predict the next "cube of cubes" to be Ag172(SR)72(PR'3)8] (33), in the evolution of growth of this cluster sequence.

7.
Nat Mater ; 15(5): 564-9, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26808458

RESUMEN

Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

8.
Inorg Chem ; 56(19): 11470-11479, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28915026

RESUMEN

Understanding the nucleation and growth pathways of nanocrystallites allows precise control of the size and shape of functional crystalline nanomaterials of importance in nanoscience and nanotechnology. This paper provides a detailed analysis of the stereochemical and electronic requirements of three series of nanoclusters based on face-centered cubes (fcc) as the basic building blocks, namely, 1-, 2-, and 3-D assemblages of fcc to form superrods (n), supersquares (n2), and supercubes (n3). The generating functions for calculating the numbers (and arrangements) of surface and interior metal atoms, as well as the number and dispositions of the ligands, for these particular sequences of fcc metal clusters of the general formula [Mm(SR)l(PR'3)8]q (where M = coinage metals; SR = thiolates (or group XI ligands), and PR'3 = phosphines) are presented. An electron-counting scheme based on the jelliumatic shell nodel, a variant of the jellium model, predicts the electron requirements and hence the chemical compositions that are critical in the design and synthesis of the next generation of giant nanoclusters in the nanorealm. The ligand binding specificities, which are keys to effective surface ligand control of the size and shape of these nanoclusters, are defined. Finally, a connection is made with regard to the growth of fcc metals, n3, from fcc supercubes (n < 10) to fcc nanocrystallites/particles (10 < n < 102) and to fcc bulk phase (n > 102).

9.
J Am Chem Soc ; 138(39): 12751-12754, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27626935

RESUMEN

In this work, a facile ion-pairing strategy for asymmetric synthesis of optically active negatively charged chiral metal nanoparticles using chiral ammonium cations is demonstrated. A new thiolated chiral three-concentric-shell cluster, [Ag28Cu12(SR)24]4-, was first synthesized as a racemic mixture and characterized by single-crystal X-ray structure determination. Mass spectrometric measurements revealed relatively strong ion-pairing interactions between the anionic nanocluster and ammonium cations. Inspired by this observation, the as-prepared racemic mixture was separated into enantiomers by employing chiral quaternary ammonium salts as chiral resolution agents. Subsequently, direct asymmetric synthesis of optically active enantiomers of [Ag28Cu12(SR)24]4- was achieved by using appropriate chiral ammonium cations (such as N-benzylcinchoninium vs N-benzylcinchonidinium) in the cluster synthesis. These simple strategies, ion-pairing enantioseparation and direct asymmetric synthesis using chiral counterions, may be of general use in preparing chiral metal nanoparticles.

10.
J Am Chem Soc ; 137(37): 11880-3, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26351859

RESUMEN

With the incorporation of Pd or Pt atoms, thiolated Ag-rich 25-metal-atom nanoclusters were successfully prepared and structurally characterized for the first time. With a composition of [PdAg24(SR)18](2-) or [PtAg24(SR)18](2-), the obtained 25-metal-atom nanoclusters have a metal framework structure similar to that of widely investigated Au25(SR)18. In both clusters, a M@Ag12 (M = Pd, Pt) core is capped by six distorted dimeric -RS-Ag-SR-Ag-SR- units. However, the silver-thiolate overlayer gives rise to a geometric chirality at variance to Au25(SR)18. The effect of doping on the electronic structure was studied through measured optical absorption spectra and ab initio analysis. This work demonstrates that modulating electronic structures by transition-metal doping is expected to provide effective means to manipulate electronic, optical, chemical, and catalytic properties of thiolated noble metal nanoclusters.

11.
J Am Chem Soc ; 136(20): 7197-200, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24796211

RESUMEN

A series of all-thiol stabilized bimetallic Au-Cu nanoclusters, [Au(12+n)Cu32(SR)(30+n)](4-) (n = 0, 2, 4, 6 and SR = SPhCF3), are successfully synthesized and characterized by X-ray single-crystal analysis and density functional theory (DFT) calculations. Each cluster consists of a Keplerate two-shell Au12@Cu20 core protected by (6 - n) units of Cu2(SR)5 and n units of Cu2Au(SR)6 (n = 0, 2, 4, 6) motifs on its surface. The size and structural evolution of the clusters is atomically controlled by the Au precursors and countercations used in the syntheses. The clusters exhibit similar optical absorption properties that are not dependent on the number of surface Cu2Au(SR)6 units. Although DFT suggests an electronic structure with an 18-electron superatom shell closure, the clusters display different thermal stabilities. [Au(12+n)Cu32(SR)(30+n)](4-) clusters with n = 0 and 2 are more stable than those with n = 4 and 6. Moreover, an oxidation product of the clusters, [Au13Cu12(SR)20](4-), is structurally identified to gain insight into how the clusters are oxidized.

12.
J Am Chem Soc ; 136(37): 12856-9, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25171506

RESUMEN

A facile method has been developed for face-to-face assembly of two-dimensional surfactant-free Pd nanosheets into one-dimensional Pd superlattice nanowires. The length of the Pd nanowires can be well controlled by introducing cations of different concentration and charge density. Our studies reveal that cations with higher charge density have stronger charge-screening ability, and their introduction leads to more positive zeta-potential and decreased electrostatic repulsion between negatively charged Pd nanosheets. Moreover, their surfactant-free feature is of great importance in assembling the Pd nanosheets into superlattice nanowires. While the cations are important for the assembly of Pd nanosheets, the use of poly(vinylpyrrolidone) is necessary to enhance the stability of the assembled superlattice nanowires. The as-assembled segmented Pd nanowires display tunable surface plasmon resonance features and excellent hydrogen-sensing properties.

13.
J Am Chem Soc ; 135(26): 9568-71, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23789787

RESUMEN

Three novel bimetallic Au-Cu nanoclusters stabilized by a mixed layer of thiolate and phosphine ligands bearing pyridyl groups are synthesized and fully characterized by X-ray single crystal analysis and density functional theory computations. The three clusters have an icosahedral Au13 core face-capped by two, four, and eight Cu atoms, respectively. All face-capping Cu atoms in the clusters are triply coordinated by thiolate or pyridyl groups. The surface ligands control the exposure of Au sites in the clusters. In the case of the Au13Cu8 cluster, the presence of 12 2-pyridylthiolate ligands still leaves open space for catalysis. All the 3 clusters are 8-electron superatoms displaying optical gaps of 1.8-1.9 eV. The thermal decomposition studies suggest that the selective release of organic ligands from the clusters is possible.


Asunto(s)
Cobre/química , Oro/química , Nanopartículas del Metal/química , Ligandos , Modelos Moleculares , Fosfinas/química , Piridinas/química , Teoría Cuántica , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
14.
Eur Biophys J ; 42(6): 455-61, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23467783

RESUMEN

Circular dichroism (CD) is a spectroscopic technique widely used for estimating protein secondary structures in aqueous solution, but its accuracy has been doubted in recent work. In the present paper, the contents of nine globular proteins with known secondary structures were determined by CD spectroscopy and Fourier transform infrared spectroscopy (FTIR) in aqueous solution. A large deviation was found between the CD spectra and X-ray data, even when the experimental conditions were optimized. The content determined by FTIR was in good agreement with the X-ray crystallography data. Therefore, CD spectra are not recommended for directly calculating the content of a protein's secondary structure.


Asunto(s)
Dicroismo Circular/métodos , Proteínas/química , Animales , Bovinos , Pollos , Hemoglobinas/química , Caballos , Muramidasa/química , Mioglobina/química , Estructura Secundaria de Proteína , Conejos , Reproducibilidad de los Resultados , Ribonucleasa Pancreática/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Temperatura , Rayos X
15.
Nanotechnology ; 24(5): 055706, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23324261

RESUMEN

The second near-infrared window (NIR-II, wavelength of 1.0-1.4 µm) is optimal for the bioimaging of live animals due to their low albedo and endogenous autofluorescence. Herein, we report a facile and one-pot biomimetic synthesis approach to prepare water-dispersible NIR-II-emitting ultrasmall Ag(2)S quantum dots (QDs). Photoluminescence spectra showed that the emission peaks could be tuned from 1294 to 1050 nm as the size of the Ag(2)S QDs varied from 6.8 to 1.6 nm. The x-ray diffraction patterns and x-ray photoelectron spectra confirmed that the products were monoclinic α-Ag(2)S. Fourier transform infrared spectrograph analysis indicated that the products were protein-conjugated Ag(2)S QDs. Examination of cytotoxicity and the hemolysis test showed that the obtained Ag(2)S QDs had good biocompatibility, indicating that such a nanomaterial could be a new kind of fluorescent label for in vivo imaging.

16.
J Colloid Interface Sci ; 648: 102-107, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295361

RESUMEN

At ambient conditions, we found salt crystals formed from unsaturated solutions on an iron surface; these salt crystals had abnormal stoichiometries (i.e. Na2Cl and Na3Cl), and these abnormal crystals with Cl:Na of 1/2-1/3 could enhance iron corrosion. Interestingly, we found that the ratio of abnormal crystals, Na2Cl or Na3Cl, with ordinary NaCl was relative to the initial NaCl concentration of the solution. Theoretical calculations suggest that this abnormal crystallisation behaviour is attributed to the different adsorption energy curves between Cl--iron and Na+-iron, which not only promotes Na+ and Cl- adsorbing on the metallic surface to crystallise at unsaturated concentration but also induces the formation of abnormal stoichiometries of Na-Cl crystals for different kinetic adsorptionprocess. These abnormal crystals could also be observed on other metallic surfaces, such as copper. Our findings will help elucidate some fundamental physical and chemical views, including metal corrosion, crystallisation and electrochemical reactions.

17.
Colloids Surf B Biointerfaces ; 222: 113106, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36584451

RESUMEN

Mitochondria-targeted phototherapy, especially combined photothermal therapy (PTT) and photodynamic therapy (PDT), has been regarded as an attractive strategy for the treatment of tumor. In this study, a facile approach to prepare two-dimensional (2D) BiOCl-Bi2S3 nanostructures was developed, where Bi2S3 quantum dots were doped in/on the ultrathin BiOCl nanosheets, forming a p-n heterojunction. The BiOCl-Bi2S3 shows favorable photothermal conversion efficiency (32%) and synergistically reactive oxygen species (ROS) generating capability under near-infrared (NIR) irradiation. Moreover, the conjugation of synthetic targeting ligand to the surface of BiOCl-Bi2S3 endows the heterojunction effective tumor targeting ability and selective mitochondrial accumulation. The combined cancer targeting ability and synergistic PTT/PDT permit enhanced cooperative phototherapeutic efficiency of the 2D heterojunction. This study provides an attractive way for designing new class of heterostructure materials for potential applications in subcellular-targeted phototherapy.


Asunto(s)
Nanoestructuras , Neoplasias , Fotoquimioterapia , Humanos , Fototerapia , Neoplasias/patología , Nanoestructuras/química , Fotoquimioterapia/métodos , Mitocondrias/patología
18.
STAR Protoc ; 4(2): 102223, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061919

RESUMEN

The Fourier transform infrared (FT-IR) signals obtained from bacterial samples are specific and reproducible, making FT-IR an efficient tool for bacterial typing at a subspecies level. However, the typing accuracy could be affected by many factors, including sample preparation and spectral acquisition. Here, we present a unified protocol for bacterial typing based on FT-IR spectroscopy. We describe sample preparation from bacterial culture and FT-IR spectrum collection. We then detail FT-IR spectrum preprocessing and multivariate analysis of spectral data for bacterial typing.

19.
Int J Biol Macromol ; 206: 175-187, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217087

RESUMEN

Infrared (IR) spectroscopy is a highly sensitive technique that provides complete information on chemical compositions. The IR spectra of proteins or peptides give rise to nine characteristic IR absorption bands. The amide I bands are the most prominent and sensitive vibrational bands and widely used to predict protein secondary structures. The interference of H2O absorbance is the greatest challenge for IR protein secondary structure prediction. Much effort has been made to reduce/eliminate the interference of H2O, simplify operation steps, and increase prediction accuracy. Progress in sampling and equipment has rendered the Fourier transform infrared (FTIR) technique suitable for determining the protein secondary structure in broader concentration ranges, greatly simplifying the operating steps. This review highlights the recent progress in sample preparation, data analysis, and equipment development of FTIR in A/T mode, with a focus on recent applications of FTIR spectroscopy in the prediction of protein secondary structure. This review also provides a brief introduction of the progress in ATR-FTIR for predicting protein secondary structure and discusses some combined IR methods, such as AFM-based IR spectroscopy, that are used to analyze protein structural dynamics and protein aggregation.


Asunto(s)
Péptidos , Proteínas , Péptidos/química , Estructura Secundaria de Proteína , Proteínas/química , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier/métodos
20.
Dalton Trans ; 52(1): 52-57, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36453230

RESUMEN

A novel alkynyl-stabilized silver-copper alloy nanocluster with the composition of [Ag13-xCu6+x(tBuC6H4CC)14(PPh3)6](SbF6)3 was prepared by the (PPh3)2CuBH4-mediated reduction approach. The nanocluster features a centred disordered-octahedral Ag7Cu6 kernel, which is protected by hybrid alkynyl and triphenylphosphine ligands. Structural comparison of this two-electron nanocluster with other alkynyl-capped Ag/Cu ones suggested that the structure of alkynyl ligands played an important role in dictating the structures of the resulting nanoclusters. The title cluster showed high performance in the catalytic hydrogenation of 4-nitrophenol, indicative of the bright future of cluster-based catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA