Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 17(30): 19854-61, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26159896

RESUMEN

In this work, gold-silica core-shell (Au@silica) nanoparticles (NPs) with various silica-shell thicknesses are incorporated into P3HT:PCBM/ZnO nanorod (NR) hybrid solar cells. Enhancement in the short-circuit current density and the efficiency of the hybrid solar cells is attained with the appropriate addition of Au@silica NPs regardless of the silica-shell thickness. Compared to the P3HT:PCBM/ZnO NR hybrid solar cell, a 63% enhancement in the efficiency is achieved by the P3HT:PCBM/Au@silica NP/ZnO NR hybrid solar cell. The finite difference time domain simulations indicate that the strength of the Fano resonance, i.e., the electric field of the quasi-static asymmetric quadrupole, on the surface of Au@silica NPs in the P3HT:PCBM/ZnO NR hybrid significantly decreases with increasing thickness of the silica shell. Raman characterization reveals that the degree of P3HT order increases when Au@silica NPs are incorporated into the P3HT:PCBM/ZnO NR hybrid. The charge separation at the interface between P3HT and PCBM as well as the electron transport in the active layer are retarded by the electric field of the Fano resonance. Nevertheless, the prolongation of the electron lifetime and the reduction of the electron transit time in the P3HT:PCBM/ZnO NR hybrid solar cells, which result in an enhancement of electron collection, are achieved by the addition of Au@silica NPs. This may be attributed to the improvement in the degree of P3HT order and connectivity of PCBM when Au@silica NPs are incorporated into the P3HT:PCBM active layer.

2.
ACS Appl Mater Interfaces ; 13(35): 41524-41536, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34436855

RESUMEN

Synchrotron-based X-ray spectroscopic and microscopic techniques are used to identify the origin of enhancement of the photoelectrochemical (PEC) properties of BiVO4 (BVO) that is coated on ZnO nanodendrites (hereafter referred to as BVO/ZnO). The atomic and electronic structures of core-shell BVO/ZnO nanodendrites have been well-characterized, and the heterojunction has been determined to favor the migration of charge carriers under the PEC condition. The variation of charge density between ZnO and BVO in core-shell BVO/ZnO nanodendrites with many unpaired O 2p-derived states at the interface forms interfacial oxygen defects and yields a band gap of approximately 2.6 eV in BVO/ZnO nanocomposites. Atomic structural distortions at the interface of BVO/ZnO nanodendrites, which support the fact that there are many interfacial oxygen defects, affect the O 2p-V 3d hybridization and reduce the crystal field energy 10Dq ∼2.1 eV. Such an interfacial atomic/electronic structure and band gap modulation increase the efficiency of absorption of solar light and electron-hole separation. This study provides evidence that the interfacial oxygen defects act as a trapping center and are critical for the charge transfer, retarding electron-hole recombination, and high absorption of visible light, which can result in favorable PEC properties of a nanostructured core-shell BVO/ZnO heterojunction. Insights into the local atomic and electronic structures of the BVO/ZnO heterojunction support the fabrication of semiconductor heterojunctions with optimal compositions and an optimal interface, which are sought to maximize solar light utilization and the transportation of charge carriers for PEC water splitting and related applications.

3.
ACS Appl Mater Interfaces ; 10(4): 3714-3722, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29299916

RESUMEN

The TiO2-based heterojunction nanodendrite (ND) array composed of anatase nanoparticles (ANPs) on the surface of the rutile ND (RND) array is selected as the model photoanode to demonstrate the strategies toward eco-friendly and efficient solar water splitting using neutral electrolyte and seawater. Compared with the performances in alkaline electrolyte, a non-negligible potential drop across the electrolyte as well as impeded charge injection and charge separation is monitored in the ANP/RND array photoanode with neutral electrolyte, which are, respectively, ascribed to the series resistance of neutral electrolyte, the fundamentally pH-dependent water oxidation mechanism on TiO2 surface, as well as the less band bending at the interface of TiO2 and neutral electrolyte. Accordingly, a TiO2-based dual-staggered heterojunction ND array photoanode is further designed in this work to overcome the issue of less band bending with the neutral electrolyte. The improvement of charge separation efficiency is realized by the deposition of a transparent In2S3 layer on the ANP/RND array photoanode for constructing additional staggered heterojunction. Under illumination of AM 1.5G (100 mW cm-2), the improved photocurrent densities acquired both in neutral electrolyte and seawater at 1.23 V vs reversible hydrogen electrode (RHE), which approach the theoretical value for rutile TiO2, are demonstrated in the dual-staggered-heterojunction ND array photoanode. Faradaic efficiencies of ∼95 and ∼32% for solar water oxidation in neutral electrolyte and solar seawater oxidation for 2 h are acquired at 1.23 V vs RHE, respectively.

4.
J Chin Med Assoc ; 70(12): 527-34, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18194893

RESUMEN

BACKGROUND: Temporomandibular joint disorders (TMD) are not uncommon in patients with rheumatoid arthritis (RA). However, the extent of involvement and its clinical relevance have not been well characterized. This study evaluated the correlation between the severity of RA-related TMD and RA, as well as determined the potential predictors for early identification and management of TMD in RA patients. METHODS: We sequentially recruited 56 adult RA patients from our Arthritis Clinic. TMD and RA were surveyed, clinically by questionnaires and physical examinations, and radiologically by tomography in TMD and conventional radiography in RA. The patients were stratified into no, mild and severe TMD groups according to the physical and tomographic examinations. The correlation of the severity of TMD and RA were evaluated. The relative importance of relevant predictors of severe TMD was analyzed by a logistic regression model. RESULTS: Physical and radiologic temporomandibular joint abnormalities were found to be highly prevalent (85.7% and 74.5%) in these patients, and the occurrence increased to as much as 92.9% when the 2 data sets were combined. More than half of the patients had severe TMD presenting with debilitating symptoms or with a significant degree of bony destruction. The severity of TMD was variably correlated with RA severity. The score of hand-joint space narrowing was found to be the most influential predictor of severe TMD by logistic regression analysis. CONCLUSION: There was a high prevalence of TMD in RA patients. The severity of TMD variably correlated with RA severity. Clinically, a high score of hand-joint space narrowing may serve as an early indicator of RA patients at risk of severe TMD. This may facilitate early management and prevent the functional impairment of the temporomandibular joint.


Asunto(s)
Artritis Reumatoide/complicaciones , Trastornos de la Articulación Temporomandibular/etiología , Adulto , Anciano , Proteína C-Reactiva/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
ACS Appl Mater Interfaces ; 8(31): 20032-9, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27454929

RESUMEN

In this work, a simple planar BiVO4/TiO2 heterojunction photoanode was prepared on a fluorine-doped tin oxide (FTO) substrate for photoelectrochemical (PEC) water oxidation. The measurements of surface photovoltage, photocurrent transient behavior, and hole-scavenger-assisted PEC performance indicate that charge separation efficiency is improved compared to that of the BiVO4/FTO photoanode. This improvement is caused by the formation of the staggered BiVO4/TiO2 heterojunction. However, the photocurrent densities of the BiVO4/TiO2/FTO photoanode are higher than those of the BiVO4/FTO one only at potentials >1.2 V vs reversible hydrogen electrode, although the two BiVO4 layers with comparable light harvesting efficiencies were prepared by the same method. The hole-scavenger-assisted PEC measurements reveal that the hole injection efficiency of the BiVO4/TiO2/FTO photoanode is inferior to that of the bare BiVO4/FTO anode for oxygen evolution. It shows that the surface property of the BiVO4 layers is altered as they are deposited on different substrates. On the basis of these characterizations, the cocatalyst cobalt phosphate (Co-Pi) was further deposited on the surface of BiVO4/TiO2/FTO photoanode to improve the hole injection efficiency. Subsequently, the photocurrent density and stability of the Co-Pi/BiVO4/TiO2/FTO photoanode were significantly improved compared to those of the bare BiVO4/FTO photoanode.

6.
ACS Appl Mater Interfaces ; 7(24): 13314-21, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-26027640

RESUMEN

To improve the performance of the thin hematite photoanode for photoelectrochemical water oxidation, in this work, an nN(+) α-Fe2O3 (hematite)-TiO2 heterojunction photoanode is constructed on fluorine-doped tin oxide substrate to establish a built-in field in the space charge region for facilitating the charge separation in the hematite layer. Charge distribution in the hematite-TiO2 heterostructure is investigated using Kelvin probe force microscopy, which confirms the improvement of charge separation in hematite layer by the formation of energy-matched nN(+) α-Fe2O3-TiO2 heterojunction. Compared to the hematite photoanode, an eightfold enhancement of the photocurrent density at 1.23 V versus reversible hydrogen electrode is measured in the hematite-TiO2 heterojunction photoanode. By using hydrogen peroxide as a hole scavenger, it demonstrates that both charge separation and charge injection efficiencies in the hematite-TiO2 heterojunction photoanode are superior to those in the hematite photoanode. It results from the significant suppressions of the charge recombinations occurring within the hematite layer as well as at the interface of photoelectrode and electrolyte by the formation of the nN(+) α-Fe2O3-TiO2 heterojunction.

7.
ACS Appl Mater Interfaces ; 5(15): 7425-31, 2013 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-23844887

RESUMEN

In this work, a three-dimensional (3D) hierarchical TiO2 nanostructured array is constructed on the basis of the considerations of morphology and interfacial energetics for photoelectrochemical water splitting. The photoelectrode is composed of a core-shell structure where the core portion is a rutile TiO2 nanodendrite (ND) array and the shell portion is rutile and anatase TiO2 nanoparticles (NPs) sequentially located on the surface. The TiO2 ND array provides a fast electron transport pathway due to its quasi-single-crystalline structure. The 3D configuration with NPs in the shell portion provides a larger surface area for more efficient photocharge separation without significantly sacrificing the electron collection efficiency. Moreover, anatase TiO2 NPs constructed on the surface of the ND/rutile TiO2 NP nanostructured array enhance charge separation and suppress charge recombination at the interfacial region due to the higher conduction band edge of anatase TiO2 compared to that of rutile TiO2. A photocurrent density and photoconversion efficiency of 2.08 mA cm(-2) at 1.23 V vs reversible hydrogen electrode (RHE) and 1.13% at 0.51 V vs RHE are, respectively, attained using the hierarchical TiO2 nanostructured array photoelectrochemical cell under illumination of AM 1.5G (100 mW cm(-2)).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA