Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Circ Res ; 131(9): 768-787, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36134578

RESUMEN

RATIONALE: Vascular smooth muscle cells (VSMCs) phenotype switch from contractile to proliferative phenotype is a pathological hallmark in various cardiovascular diseases. Recently, a subset of long noncoding RNAs was identified to produce functional polypeptides. However, the functional impact and regulatory mechanisms of long noncoding RNAs in VSMCs phenotype switching remain to be fully elucidated. OBJECTIVES: To illustrate the biological function and mechanism of a VSMC-enriched long noncoding RNA and its encoded peptide in VSMC phenotype switching and vascular remodeling. RESULTS: We identified a VSMC-enriched transcript encoded by a previously uncharacterized gene, which we called phenotype switching regulator (PSR), which was markedly upregulated during vascular remodeling. Although PSR was annotated as a long noncoding RNA, we demonstrated that the lncPSR (PSR transcript) also encoded a protein, which we named arteridin. In VSMCs, both arteridin and lncPSR were necessary and sufficient to induce phenotype switching. Mechanistically, arteridin and lncPSR regulate downstream genes by directly interacting with a transcription factor YBX1 (Y-box binding protein 1) and modulating its nuclear translocation and chromatin targeting. Intriguingly, the PSR transcription was also robustly induced by arteridin. More importantly, the loss of PSR gene or arteridin protein significantly attenuated the vascular remodeling induced by carotid arterial injury. In addition, VSMC-specific inhibition of lncPSR using adeno-associated virus attenuated Ang II (angiotensin II)-induced hypertensive vascular remodeling. CONCLUSIONS: PSR is a VSMC-enriched gene, and its transcript IncPSR and encoded protein (arteridin) coordinately regulate transcriptional reprogramming through a shared interacting partner, YBX1. This is a previously uncharacterized regulatory circuit in VSMC phenotype switching during vascular remodeling, with lncPSR/arteridin as potential therapeutic targets for the treatment of VSMC phenotype switching-related vascular remodeling.


Asunto(s)
ARN Largo no Codificante , Angiotensina II/metabolismo , Proliferación Celular/genética , Células Cultivadas , Cromatina/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fenotipo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Remodelación Vascular
2.
Circulation ; 146(14): 1082-1095, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36004643

RESUMEN

BACKGROUND: Adverse environmental exposure during the prenatal period can lead to diseases in the offspring, including hypertension. Whether or not the hypertensive phenotype can be transgenerationally transmitted is not known. METHODS: Pregnant Sprague Dawley rats were intraperitoneally injected with lipopolysaccharide (LPS) on gestation days 6, 8, 10, and 12 to generate the prenatal LPS exposure model. Blood pressure was monitored by both telemetry and tail-cuff method. RNA sequencing was performed to analyze transcriptome alteration in the kidney of the third generation. Tempol and spironolactone were used to test the potential preventative and therapeutic effect of targeting reactive oxygen species and mineralocorticoid receptor signaling, respectively. Molecular biological experiments were performed to illustrate the mechanism of epigenetic and transcription regulation. RESULTS: Prenatal LPS exposure can impair the ability to excrete a salt load and induce hypertension from the first to the third generations, with the fourth and fifth generations, inducing salt-sensitive hypertension. Compared with control pups, the transcriptome in the kidney of the hypertensive third-generation prenatal LPS-exposed offspring have upregulation of the Ras-related C3 botulinum toxin substrate 1 (Rac1) gene and activation of mineralocorticoid receptor signaling. Furthermore, we found that LPS exposure during pregnancy triggered oxidative stress that upregulated KDM3B (histone lysine demethylase 3B) in the oocytes of first-generation female rats, leading to an inheritable low level of H3K9me2 (histone H3 lysine 9 dimethylation), resulting in the transgenerational upregulation of Rac1. Based on these findings, we treated the LPS-exposed pregnant rats with the reactive oxygen species scavenger, tempol, which successfully prevented hypertension in the first-generation offspring and the transgenerational inheritance of hypertension. CONCLUSIONS: These findings show that adverse prenatal exposure induces transgenerational hypertension through an epigenetic-regulated mechanism and identify potentially preventive and therapeutic strategies for hypertension.


Asunto(s)
Hipertensión , Efectos Tardíos de la Exposición Prenatal , Animales , Óxidos N-Cíclicos , Femenino , Histona Demetilasas , Histonas , Hipertensión/inducido químicamente , Hipertensión/genética , Histona Demetilasas con Dominio de Jumonji , Lipopolisacáridos/toxicidad , Lisina , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/etiología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Receptores de Mineralocorticoides/genética , Marcadores de Spin , Espironolactona , Proteína de Unión al GTP rac1/genética
3.
Environ Res ; 217: 114938, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436556

RESUMEN

To obtain a versatile formaldehyde oxidation material, simultaneously increasing the oxidative ability, recyclability and deactivation repellence (e.g., enduring the interference from moisture and aromatic compound omnipresent in indoor air) is of great significance. Herein, the above properties of α-MnO2 were synchronously updated via one step treatment in oxalic acid (H2C2O4), and an in-depth understanding of the surface properties-performance relationship was provided by systematic characterizations and designed experiments. Compared with the pristine sample, XPS, ESR, O2-TPD, CO-TPR and pyridine-IR reveal that H2C2O4 created substantial Mn3+ species on surface, exposing a higher coverage of oxygen vacancies that actively participated in the dissociative activation of gas-phase O2 into reactive chemically adsorbed oxygen (OC), and the abundant Lewis acid sites further enabled the effective O2 activation process. The large amount of oxygen OC promoted the HCHO-to-CO2 conversion and inhibited the accumulation of formate that required a high temperature of 170 °C to be eliminated, thus conspicuously improving the α-MnO2's thermal recovery. The combined H2O-TPD, H2O-preadsorbed CO-TPR, C6H6-TPD and C6H6-preadsorbed CO-TPR investigations shed light on the H2C2O4-induced water and benzene resistance. The notably weakened water and benzene binding strength with the H2C2O4-modified surface together with the unrestrained oxygen OC accounted for the outstanding anti-deactivation performance.


Asunto(s)
Óxidos , Agua , Óxidos/química , Ácido Oxálico , Temperatura , Compuestos de Manganeso/química , Benceno , Oxígeno/química , Catálisis , Formaldehído/química , Estrés Oxidativo
4.
BMC Cardiovasc Disord ; 18(1): 81, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29728052

RESUMEN

BACKGROUND: Currently, many methodological approaches have been developed to assess peripheral endothelial function. However, a development of the noninvasive and automated technique for routinely assessing endothelial function is still required. We evaluated the potential value of a new method to measure peripheral endothelial function with reactive hyperemia peripheral arterial volume (RH-PAV) in patients with chest pain. METHODS: We used a novel oximeter-like probe to detect the peripheral arterial volume (PAV) of the finger and compared it with brachial flow-mediated dilation (FMD) performed in 93 consecutive patients with chest pain. The RH-PAV index was defined as the ratio of the digital pulse volume during reactive hyperemia relative to the baseline. RESULTS: Ninety-three patients (53 men, 58 ± 5 years) completed the study, and 53 patients demonstrated coronary artery disease (CAD) following scheduled coronary angiography. There was a moderate linear relationship between PAV and FMD (r = 0.69, p < 0.01). Similar to FMD, PAV was more impaired in patients who have more cardiovascular risk factors (CRFs). The subjects with CAD had lower PAV and FMD, compared with those without CAD (1.05 ± 0.23 VS. 1.41 ± 0.37, p < 0.01; 6.7% ± 2.9% VS. 10.4% ± 2.9%, p < 0.01, respectively), and the relationships between FMD and PAV were also significant in both CAD (r = 0.54, p < 0.01) and non-CAD (r = 0.62, p < 0.01) patients. CONCLUSIONS: Endothelial function of digital artery assessed with the novel PAV method demonstrated a profile similar to that of brachial artery measured with FMD. The hyperemia PAV was decreased by factors which were considered to impair endothelial function, suggesting that PAV has the potential to be a novel method to study endothelial function.


Asunto(s)
Determinación del Volumen Sanguíneo/métodos , Volumen Sanguíneo , Arteria Braquial/fisiopatología , Enfermedades Cardiovasculares/diagnóstico , Endotelio Vascular/fisiopatología , Dedos/irrigación sanguínea , Fotopletismografía/métodos , Adulto , Anciano , Biomarcadores/sangre , Determinación del Volumen Sanguíneo/instrumentación , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/fisiopatología , Estudios de Factibilidad , Femenino , Hemoglobinas/metabolismo , Humanos , Hiperemia/fisiopatología , Masculino , Persona de Mediana Edad , Fotopletismografía/instrumentación , Proyectos Piloto , Valor Predictivo de las Pruebas , Flujo Pulsátil , Flujo Sanguíneo Regional , Vasodilatación
5.
Nanomaterials (Basel) ; 14(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38869603

RESUMEN

In this work, by employing field plate (FP) and N ion-implantation edge termination (NIET) structure, the electrical performance of the ß-Ga2O3 Schottky barrier diode (SBD) was greatly improved. Ten samples of vertical SBDs were fabricated to investigate the influence of the relative positions of field plates (FPs) and ion implantation on the device performance. The device with the FP of 15 µm and the ion implantation at the edge of the Schottky electrode exhibited a breakdown voltage (Vbr) of 1616 V, a specific on-resistance (Ron,sp) of 5.11 mΩ·cm2, a power figure of merit (PFOM) of 0.511 GW/cm2, and a reverse current density of 1.2 × 10-5 A/cm2 @ -1000 V. Compared to the control device, although the Ron,sp increased by 1 mΩ·cm2, the Vbr of the device increased by 183% and the PFOM increased by 546.8%. Moreover, the reverse leakage current of the device with the FP and NIET structure decreased by three orders of magnitude. The TCAD simulation revealed that the peak electric field at the interface decreased from 7 MV/cm @ -500 V to 4.18 MV/cm @ -1000 V. These results demonstrate the great potential for the ß-Ga2O3 SBD with a FP and NIET structure in power electronic applications.

6.
Nutrients ; 15(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37242286

RESUMEN

RATIONALE: Epidemiological studies that focus on the relationship between dietary isoflavone intake and the risk of breast cancer still lead to inconsistent conclusions. Herein, we conducted a meta-analysis of the latest studies to explore this issue. METHOD: We performed a systematic search using Web of Science, PubMed, and Embase from inception to August 2021. The robust error meta-regression (REMR) model and generalized least squares trend (GLST) model were used to establish dose-response relationships between isoflavones and breast cancer risk. RESULTS: Seven cohort studies and 17 case-control studies were included in the meta-analysis, and the summary OR for breast cancer was 0.71 (95% CI 0.72-0.81) when comparing the highest to the lowest isoflavone intake. A subgroup analysis further showed that neither menopausal status nor ER status has a significant influence on the association between isoflavone intake and breast cancer risk, while the isoflavone intake doses and study design does. When the isoflavones exposure was less than 10 mg/day, no effects on breast cancer risk were detected. The inverse association was significant in the case-control studies but not in the cohort studies. In the dose-response meta-analysis of the cohort studies, we observed an inverse association between isoflavone intake and breast cancer: a 10 mg/day increase in isoflavone intake was related to reductions of 6.8% (OR = 0.932, 95% CI 0.90-0.96) and 3.2% (OR = 0.968, 95% CI 0.94-0.99) in breast cancer risk when using REMR and GLST, respectively. In the dose-response meta-analysis of the case-control studies, the inverse association for every 10 mg/day isoflavone intake was associated with breast cancer risk reductions by 11.7%. CONCLUSION: present evidence demonstrated that taking in dietary isoflavone is helpful in reducing the breast cancer risk.


Asunto(s)
Neoplasias de la Mama , Isoflavonas , Femenino , Humanos , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/prevención & control , Estudios de Cohortes , Dieta , Riesgo , Factores de Riesgo , Estudios Observacionales como Asunto
7.
Nutrients ; 15(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37513640

RESUMEN

Exhaustive exercise (EE) induces liver injury and has recently gained much attention. Sulforaphane (SFN) can protect the liver from inflammation and oxidative stress. However, the effects of SFN on EE-induced liver injury and its underlying mechanisms are still unclear. C57BL/6J mice swimming to exhaustion for seven days were used to simulate the liver injury caused by EE. Different doses of SFN (10, 30, 90 mg/kg body weight) were gavage-fed one week before and during the exercise. SFN intervention significantly reduced the EE-induced lactate dehydrogenase (LDH), creatine kinase (CK), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in the serum, as well as attenuating liver tissue morphological abnormality, oxidative stress injury, and inflammation. Liver transcriptomic analysis showed that the differentially expressed genes altered by SFN intervention in the exercise model were mainly enriched in glucose and lipid metabolism pathways. The most altered gene by SFN intervention screened by RNA-seq and validated by qRT-PCR is Ppp1r3g, a gene involved in regulating hepatic glycogenesis, which may play a vital role in the protective effects of SFN in EE-induced liver damage. SFN can protect the liver from EE-induced damage, and glucose and lipid metabolism may be involved in the mechanism of the protective effects.


Asunto(s)
Ejercicio Físico , Isotiocianatos , Hepatopatías , Hígado , Sulfóxidos , Hígado/lesiones , Sulfóxidos/farmacología , Isotiocianatos/farmacología , Estrés Oxidativo , Transcriptoma , Animales , Ratones , Hepatopatías/metabolismo , Hepatopatías/prevención & control , Ratones Endogámicos C57BL , Glucosa/metabolismo , Lípidos
8.
Technol Health Care ; 30(S1): 545-551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35124628

RESUMEN

BACKGROUND: Tibial plateau fracture is a common fracture encountered in the clinic. OBJECTIVE: This study determined the optimal timing and surgical approach for patients with tibial plateau fracture. METHODS: Fifty-two patients with complex tibial plateau fractures were treated in our hospital (the People's Hospital of Zhongjiang County) between 2013 and 2015. These patients were recruited as participants in this study; all patients were randomly allocated into two groups of 26 patients each. Patients in Group 1 underwent single-incision, single-plate knee surgeries via an antero-lateral approach, and patients in Group 2 underwent anterior median incisions of the knee for double-plate surgeries. The effects of the approaches were compared and analyzed. RESULTS: The best time to perform surgery was 6-8 days post-injury. The anterior median incision, double-plate method approach was better than the antero-lateral, single-incision, single-plate method. For the former method, the healing among middle-aged and young patients was better than that of elderly patients, and that healing of men was slightly better than that of female patients. However, the degree of healing among patients was > 80% at 5 months postoperatively. The purpose of surgical management has been fully achieved. CONCLUSION: The optimal timing of surgery for patients with complex tibial plateau fractures is 6-8 days post-injury. The surgical approach needs to be determined based on the actual condition of the patient. However, the treatment effect of an anterior median incision, double-plate method is better, and the recovery rate may approach 80% at 5 months postoperatively.


Asunto(s)
Fijación Interna de Fracturas , Fracturas de la Tibia , Anciano , Placas Óseas , Femenino , Fijación Interna de Fracturas/métodos , Humanos , Articulación de la Rodilla , Extremidad Inferior , Masculino , Persona de Mediana Edad , Fracturas de la Tibia/cirugía , Resultado del Tratamiento
9.
Sci Total Environ ; 830: 154818, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35341871

RESUMEN

Under the background of indoor air formaldehyde decontamination, a freestanding ultra-light assembly was fabricated via ice-templating approach starting from MnO2 nanoparticles and environmentally benign agar powder. The 3D composite of agar and MnO2 (AM-3D) was comparatively studied with powdered counterparts (including pure MnO2 and mixture of agar and MnO2) and the 3D-structured agar for formaldehyde oxidation, and their physicochemical properties were examined with XRD, ATR, SEM, XPS, isothermal N2 adsorption, ESR, Raman, CO-TPR and O2-TPD. For the single test of formaldehyde oxidation, the AM-3D catalyst exhibited 62.0%-67.0% removal percentage for ~400 mg/m3 formaldehyde, which did not demonstrate significant advantage over the control samples. However, thanks to the porous 3D agar scaffold with large spatial volume that could promote a rapid gas-phase formaldehyde concentration reduction, and the strong interaction between the dispersed MnO2 particles and agar substrate that could afford a large amount of reactive oxygen species to further oxidize the adsorbed formaldehyde, the AM-3D composite was a much better HCHO-to-CO2 converter and possessed much more advantageous stability for repeated cycles of formaldehyde oxidation: even after ten cycles, there was still 41.7% of formaldehyde removed. Furthermore, the viable sunlight irradiation could easily restore the activity of the used AM-3D catalyst back to the level approaching that of the fresh one. Finally, reaction pathways were put forward via the infrared spectroscopic and ion chromatographic investigations on the surface intermediates of the spent materials.


Asunto(s)
Compuestos de Manganeso , Óxidos , Agar , Catálisis , Formaldehído , Compuestos de Manganeso/química , Oxidación-Reducción , Óxidos/química , Oxígeno/química
10.
Biomed Pharmacother ; 114: 108799, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30951948

RESUMEN

S-amlodipine has been broadly used to treat hypertension, but its protective effects and underlying mechanism remain controversial. The purpose of our study was to investigate the mechanism by which S-amlodipine improves endothelial dysfunction. Specifically, we investigated if S-amlodipine regulates RANK/RANKL/OPG and micro-RNA 155 (miR-155) levels. Spontaneous hypertensive rats (SHR) were randomly divided into two groups: SHR (n = 12) and S-amlodipine (n = 12). We found that left ventricular ejection fraction (LVEF) increased significantly in the S-amlodipine group compared to the SHR group. After 10 weeks of S-amlodipine treatment, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were significantly lower and eNOS and NO production was significantly higher in the S-amlodipine group compared to the SHR group. In human umbilical vein endothelial cells (HUVECs), miR-155, RANK, and RANKL levels were significantly decreased, while OPG mRNA levels were significantly increased in the S-amlodipine group. HUVECs were transfected with miR-155 mimics or an inhibitor to determine the relationship between miR-155 and RANK/RANKL/OPG and NF-κB signaling. OPG mRNA levels following miR-155 inhibition were significantly higher compared to levels following treatment with miR-155 mimics. S-amlodipine significantly inhibited RANKL expression and NF-κB phosphorylation, and there were no significant differences in response to the NF-κB inhibitor (Bay110785). RANKL expression and NF-κB phosphorylation significantly decreased in the miR-155 inhibitor group. Furthermore, OPG protein expression significantly increased in response to miR-155 inhibition and S-amlodipine treatment (all p < 0.05). Our results indicate that S-amlodipine inhibits inflammation and protects against endothelial dysfunction, likely via regulating the RANK/RANKL/OPG pathway, which appears to be downstream of miR-155.


Asunto(s)
Amlodipino/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , MicroARNs/metabolismo , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Animales , Línea Celular , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Interleucina-6/metabolismo , Masculino , FN-kappa B/metabolismo , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Disfunción Ventricular Izquierda/dietoterapia , Disfunción Ventricular Izquierda/metabolismo
11.
Nutr Metab (Lond) ; 16: 9, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30733817

RESUMEN

BACKGROUND/AIMS: Oxidative stress-induced damage in endothelial cells is a crucial initiator of atherosclerosis (AS), which is highly related to excessive reactive oxygen species (ROS) and mitochondrial dynamics. Resveratrol (RSV) exerts beneficial effects against endothelial oxidative injury, while the underlying mechanisms have not been fully elucidated. Thus, we aimed to explore the role of mitochondria dynamics during the anti-oxidative activities of RSV in palmitic acid (PA)-stimulated human umbilical vein endothelial cells (HUVECs) and to verify whether tyrosyl transfer- RNA synthetase (TyrRS) and poly (ADP-ribose) polymerase 1 (PARP1) are targeted during this process. METHODS: HUVECs were exposed to 200 µM of PA for 16 h before treated with 10 µM of RSV for 8 h. Cell viability was detected using Cell counting kit-8 (CCK-8) assay. The intracellular ROS level and mitochondria membrane potential (MMP) were measured using microplate reader and flow cytometry. The malondialdehyde and superoxide dismutase were measured using the microplate reader. The mitochondrial morphology and fusion process was observed under transmission electron microscopy and confocal microscopy. TyrRS and PARP1 were knocked down with the specific small interference RNAs (siRNA), and the protein expressions of TyrRS, PARP1, and mitochondrial fusion proteins (MFN1, MFN2, and OPA1) were measured by western blot. RESULTS: RSV treatment suppressed the PA-induced injuries in HUVECs, including the damage to cell viability, oxidative stress, and loss of MMP. Additionally, RSV improved the protein levels of MFN1, MFN2, and OPA1 as well as inhibited the PA-induced fragmentation of mitochondria. However, the effects of RSV on oxidative stress and mitochondrial fusion were abolished by the pretreatment of siRNAs of TyrRS and PARP1, indicating that these effects of RSV were dependent on the TyrRS-PARP1 pathway. CONCLUSIONS: RSV attenuated endothelial oxidative injury by regulating mitochondrial fusion via TyrRS-PARP1 signaling pathway.

12.
Nutr Metab (Lond) ; 16: 69, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632452

RESUMEN

BACKGROUND/AIMS: Liver lipid accumulation induced by high-fat diet (HFD) is an early onset process of non-alcoholic fatty liver diseases (NAFLD). Protein kinase A (PKA) is known to be involved in hepatic lipid metabolism. However, the role of PKA in NAFLD has not been well tested in vivo due to the lack of optimal PKA deficient mouse model. METHODS: A novel PKA-specific inhibitor gene was conditionally overexpressed in mouse (PKAi mouse) liver using LoxP/Cre system. PKA activity in the liver extract was measured with a commercial assay kit. The PKAi and control mice of 8-week age, were subjected to HFD or chow diet (CD) for 2 months. Body weight, liver index, and triglyceride in the liver were measured. RNA sequencing was performed for the liver tissues and analyzed with Gene Ontology (GO) and pathway enrichment. RESULTS: PKAi-GFP protein was overexpressed in the liver and the PKA activation was significantly inhibited in the liver of PKAi mouse. When fed with CD, RNA sequencing revealed 56 up-regulated and 51 down-regulated genes in PKAi mice compared with control mice, which were mainly involved in lipid metabolism though no significant differences in the body weight, liver index, triglyceride accumulation were observed between PKAi and control mice. However, when fed with HFD for 2 months, the liver was enlarged more, and the accumulation of triglyceride in the liver was more severe in PKAi mice. When comparing the transcriptomes of CD-fed and HFD-fed control mice, GO enrichment showed that the genes down-regulated by HFD were mainly enriched in immune-related GO terms, and up-regulated genes were enriched in metabolism. When comparing the transcriptomes of CD-fed and HFD-fed PKAi mice, GO analysis showed that the down-regulated genes were enriched in metabolism, while the up-regulated genes were clustered in ER stress-related pathways. When comparing HFD-fed PKAi and HFD-fed control mice, the genes with lower expression level in PKAi mice were enriched in the lipoprotein synthesis, which might explain that more TG is accumulated in PKAi liver after HFD feeding. CONCLUSIONS: Reduced PKA activity could be a factor promoting the TG accumulation in the liver and the development of NAFLD.

13.
Nutr Metab (Lond) ; 16: 42, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31303889

RESUMEN

BACKGROUND: Endothelial oxidative injury is a key event in the pathogenesis of atherosclerosis (AS). Resveratrol (RSV) attenuates the oxidative injury in human umbilical vein endothelial cells (HUVECs). Autophagy is critical for the RSV-induced protective effects. However, the exact underlying mechanisms haven't been completely elucidated. Thus, we aimed to explore the role of autophagy of the anti-oxidation of RSV and the underlying mechanism in palmitic acid (PA)-stimulated HUVECs. METHODS: HUVECs were pretreated with 10 µM of RSV for 2 h and treated with 200 µM of PA for an additional 24 h. Cell viability, intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels were estimated with a microplate reader and confocal microscope. Autophagosomes were analyzed by transmission electron microscopy, while lysosomes by confocal microscopy. The expression of transcription factor EB (TFEB) and related genes were quantified by qRT-PCR assay. Furthermore, TFEB levels, autophagy, and lysosomes were examined by western blot assay. RESULTS: RSV pretreatment suppressed the PA-induced decline in cell viability and elevation in ROS and MDA levels in HUVECs. RSV pretreatment also increased LC3 production and P62 degradation while promoted the autophagosomes formation. However, 3-methyladenine (3-MA) treatment attenuated RSV-induced autophagy. RSV pretreatment upregulated the TFEB and TFEB-modulated downstream genes expression in a concentration-dependent manner. Additionally, in cells transfected with TFEB small interfering RNA, RSV-induced TFEB expression and subsequent autophagy were abolished. Meanwhile, the TFEB-modulated genes expression, the lysosomes formation and the RSV-induced anti-oxidation were suppressed. CONCLUSIONS: In HUVECs, RSV attenuates endothelial oxidative injury by inducing autophagy in a TFEB-dependent manner.

14.
Antioxid Redox Signal ; 30(2): 163-183, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29310441

RESUMEN

Aims: Our previous clinical trial indicated that the flavonoid dihydromyricetin (DHM) could improve hepatic steatosis in patients with nonalcoholic fatty liver disease (NAFLD), altough the potential mechanisms of these effects remained elusive. Here, we investigated the hepatoprotective role of DHM on high-fat diet (HFD)-induced NAFLD. Results: DHM supplementation could effectively ameliorate the development of NAFLD by inhibiting hepatic lipid accumulation both in HFD-fed wild-type mice and in palmitic acid-induced hepatocytes. We reveal for the first time that mitochondrial dysfunction characterized by ATP depletion and augmented oxidative stress could be reversed by DHM treatment. Moreover, DHM enhanced the mitochondrial respiratory capacity by increasing the expression and enzymatic activities of mitochondrial complexes and increased mitochondrial reactive oxygen species scavenging by restoring manganese superoxide dismutase (SOD2) activity. Interestingly, the benefits of DHM were abrogated in SIRT3 knockout (SIRT3KO) mice and in hepatocytes transfected with SIRT3 siRNA or treated with an SIRT3-specific inhibitor. We further showed that DHM could increase SIRT3 expression by activating the adenosine monophosphate-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC1α)/estrogen-related receptor-α (ERRα) signaling pathway. Innovation: Our work indicates that SIRT3 plays a critical role in the DHM-mediated beneficial effects that include ameliorating mitochondrial dysfunction and oxidative stress in a nutritional NAFLD model both in vivo and in vitro.Conclusion: Our results suggest that DHM prevents NAFLD by improving mitochondrial respiratory capacity and redox homeostasis in hepatocytes through a SIRT3-dependent mechanism. These results could provide a foundation to identify new DHM-based preventive and therapeutic strategies for NAFLD.


Asunto(s)
Respiración de la Célula , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxidación-Reducción , Transducción de Señal/efectos de los fármacos , Sirtuina 3/metabolismo , Acetilación , Animales , Flavonoles/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Homeostasis , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
15.
Technol Health Care ; 25(6): 1097-1104, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-28854523

RESUMEN

BACKGROUND: This study aimed to investigate effects on the transmission channel caused by heterogeneous distribution in tissues and joint characteristics. METHOD: Human arm section scans were taken using CT technology, and zoned, following which, a circumference measurement experiment was performed to analyze the effect of inhomogeneous distribution of tissues. In order to analyze the arm joint's effect on channel transmission, we proposed a piecewise modeling method in combination with connection conditions. CONCLUSIONS: It can be seen from the experiment that, in the quasi-static mode, the communication channel error caused by the inhomogeneous distribution of tissues is small enough to be negligible. The error between calculated and experimental results is reduced by 3.93 dB in this experiment relative to models that did not include joint characteristics, and the average error is lowered by 0.73 dB. The variation curve fit to experimental data is also improved in this method. As such, it can be quantitatively determined that a channel model with joint characteristics is superior to models excluding joint characteristics.


Asunto(s)
Brazo/anatomía & histología , Electrocardiografía Ambulatoria/métodos , Modelos Biológicos , Tecnología de Sensores Remotos/métodos , Articulación del Codo/fisiología , Humanos , Músculo Esquelético/fisiología , Tomografía Computarizada por Rayos X
16.
mBio ; 7(2): e02210-15, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27048804

RESUMEN

UNLABELLED: The gut microbiota is found to be strongly associated with atherosclerosis (AS). Resveratrol (RSV) is a natural phytoalexin with anti-AS effects; however, its mechanisms of action remain unclear. Therefore, we sought to determine whether the anti-AS effects of RSV were related to changes in the gut microbiota. We found that RSV attenuated trimethylamine-N-oxide (TMAO)-induced AS in ApoE(-/-) mice. Meanwhile, RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TMA) production via gut microbiota remodeling in mice. Moreover, RSV increased levels of the genera Lactobacillus and Bifidobacterium, which increased the bile salt hydrolase activity, thereby enhancing bile acid (BA) deconjugation and fecal excretion in C57BL/6J and ApoE(-/-) mice. This was associated with a decrease in ileal BA content, repression of the enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) axis, and increased cholesterol 7a-hydroxylase (CYP7A1) expression and hepatic BA neosynthesis. An FXR antagonist had the same effect on FGF15 and CYP7A1 expression as RSV, while an FXR agonist abolished RSV-induced alterations in FGF15 and CYP7A1 expression. In mice treated with antibiotics, RSV neither decreased TMAO levels nor increased hepatic BA synthesis. Additionally, RSV-induced inhibition of TMAO-caused AS was also markedly abolished by antibiotics. In conclusion, RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling, and the BA neosynthesis was partially mediated through the enterohepatic FXR-FGF15 axis. IMPORTANCE: Recently, trimethylamine-N-oxide (TMAO) has been identified as a novel and independent risk factor for promoting atherosclerosis (AS) partially through inhibiting hepatic bile acid (BA) synthesis. The gut microbiota plays a key role in the pathophysiology of TMAO-induced AS. Resveratrol (RSV) is a natural phytoalexin with prebiotic benefits. A growing body of evidence supports the hypothesis that phenolic phytochemicals with poor bioavailability are possibly acting primarily through remodeling of the gut microbiota. The current study showed that RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling. And RSV-induced hepatic BA neosynthesis was partially mediated through downregulating the enterohepatic farnesoid X receptor-fibroblast growth factor 15 axis. These results offer new insights into the mechanisms responsible for RSV's anti-AS effects and indicate that the gut microbiota may become an interesting target for pharmacological or dietary interventions to decrease the risk of developing cardiovascular diseases.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Aterosclerosis/microbiología , Bacterias/metabolismo , Ácidos y Sales Biliares/metabolismo , Microbioma Gastrointestinal , Metilaminas/metabolismo , Estilbenos/administración & dosificación , Animales , Aterosclerosis/enzimología , Aterosclerosis/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Femenino , Humanos , Hígado/metabolismo , Metilaminas/efectos adversos , Ratones , Ratones Endogámicos C57BL , Resveratrol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA