Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Kidney Int ; 105(3): 524-539, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158182

RESUMEN

The urinary tract is constantly exposed to microorganisms. Host defense mechanisms in protection from microbial colonization and development of urinary tract infections require better understanding to control kidney infection. Here we report that the lectin collectin 11 (CL-11), particularly kidney produced, has a pivotal role in host defense against uropathogen infection. CL-11 was found in mouse urine under normal and pathological conditions. Mice with global gene ablation of Colec11 had increased susceptibility to and severity of kidney and to an extent, bladder infection. Mice with kidney-specific Colec11 ablation exhibited a similar disease phenotype to that observed in global Colec11 deficient mice, indicating the importance of kidney produced CL-11 for protection against kidney and bladder infection. Conversely, intravesical or systemic administration of recombinant CL-11 reduced susceptibility to and severity of kidney and bladder infection. Mechanism analysis revealed that CL-11 can mediate several key innate defense mechanisms (agglutination, anti- adhesion, opsonophagocytosis), and limit local inflammatory responses to pathogens. Furthermore, CL-11-mediated innate defense mechanisms can act on clinically relevant microorganisms including multiple antibiotic resistant strains. CL-11 was detectable in eight of 24 urine samples from patients with urinary tract infections but not detectable in urine samples from ten healthy individuals. Thus, our findings demonstrate that CL-11 is a key factor of host defense mechanisms in kidney and bladder infection with therapeutic potential for human application.


Asunto(s)
Cistitis , Infecciones por Escherichia coli , Infecciones Urinarias , Humanos , Ratones , Animales , Vejiga Urinaria , Riñón , Colectinas/genética
2.
J Intern Med ; 295(5): 620-633, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38343089

RESUMEN

BACKGROUND: Left ventricular hypertrophy (LVH) is highly prevalent in haemodialysis (HD) patients and is associated with an increased risk of death. Roxadustat and recombinant human erythropoietin (rHuEPO, abbreviated as EPO) are the main treatment strategies for renal anaemia in HD patients, but it has not been clear whether there is a difference in their effect on LVH. METHODS: In this multi-centre, prospective, randomized trial of 12-month duration, study participants were randomized in a 1:1 ratio to the roxadustat group or the EPO group. The doses of both treatment regimens were adjusted so that the patients had a haemoglobin level of 10.0-12.0 g per dL. The primary study endpoint was the change from baseline to 12 months in the left ventricular mass index (LVMI, g/m2) measured by echocardiography. RESULTS: In total, 114 patients were enrolled. The mean age was 50 years, and the median dialysis duration was 33 months. Sixty-one patients were men, and 24 were diabetic. LVMI decreased from 116.18 ± 27.84 to 110.70 ± 25.74 g/m2 in the roxadustat group. However, it increased from 109.35 ± 23.41 to 114.99 ± 28.46 g/m2 in the EPO group, with a significant difference in the change in LVMI between the two groups [-5.48 (-11.60 to 0.65) vs. 5.65 (0.74 to 10.55), p < 0.05]. Changes in left ventricular mass, end-diastolic volume and 6-min walk test seemed superior in the roxadustat group. There were no significant differences in other cardiac geometry, biochemical parameters and major adverse cardiovascular events between the two groups. CONCLUSIONS: Compared to EPO, roxadustat is more helpful in the regression of LVH in HD patients.


Asunto(s)
Anemia , Eritropoyetina , Fallo Renal Crónico , Masculino , Humanos , Persona de Mediana Edad , Femenino , Estudios Prospectivos , Diálisis Renal/efectos adversos , Anemia/etiología , Anemia/complicaciones , Eritropoyetina/uso terapéutico , Hipertrofia Ventricular Izquierda/tratamiento farmacológico , Hipertrofia Ventricular Izquierda/etiología , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/terapia
3.
Ren Fail ; 46(2): 2387428, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39099183

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), and its pathogenesis has not been clarified. Current research suggests that DKD involves multiple cell types and extra-renal factors, and it is particularly important to clarify the pathogenesis and identify new therapeutic targets. Single-cell RNA sequencing (scRNA-seq) technology is high-throughput sequencing of the transcriptomes of individual cells at the single-cell level, which is an effective technology for exploring the development of diseases by comparing genetic information, reflecting the differences in genetic information between cells, and identifying different cell subpopulations. Accumulating evidence supports the role of scRNA-seq in revealing the pathogenesis of diabetes and strengthening our understanding of the molecular mechanisms of DKD. We reviewed the scRNA-seq data this time. Then, we analyzed and discussed the applications of scRNA-seq technology in DKD research, including annotation of cell types, identification of novel cell types (or subtypes), identification of intercellular communication, analysis of cell differentiation trajectories, gene expression detection, and analysis of gene regulatory networks, and lastly, we explored the future perspectives of scRNA-seq technology in DKD research.


Asunto(s)
Nefropatías Diabéticas , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Humanos , Nefropatías Diabéticas/genética , Análisis de la Célula Individual/métodos , Transcriptoma , Secuenciación de Nucleótidos de Alto Rendimiento , Redes Reguladoras de Genes , Fallo Renal Crónico/genética , Perfilación de la Expresión Génica
4.
Ther Adv Endocrinol Metab ; 15: 20420188241252309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071115

RESUMEN

Metabolic syndrome (MetS) is a group of conditions characterized by hypertension (HTN), hyperglycaemia or insulin resistance (IR), hyperlipidaemia, and abdominal obesity. MetS is associated with a high incidence of cardiovascular events and mortality and is an independent risk factor for chronic kidney disease (CKD). MetS can cause CKD or accelerate the progression of kidney disease. Recent studies have found that MetS and kidney disease have a cause-and-effect relationship. Patients with CKD, those undergoing kidney transplantation, or kidney donors have a significantly higher risk of developing MetS than normal people. The present study reviewed the possible mechanisms of MetS in patients with CKD, including the disorders of glucose and fat metabolism after kidney injury, IR, HTN and the administration of glucocorticoid and calcineurin inhibitors. In addition, this study reviewed the effect of MetS in patients with CKD on important target organs such as the kidney, heart, brain and blood vessels, and the treatment and prevention of CKD combined with MetS. The study aims to provide strategies for the diagnosis, treatment and prevention of CKD in patients with MetS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA