Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 62(21): 5696-5706, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37707186

RESUMEN

Vibration rejection is one of the key techniques to stabilize the line of sight (LOS) for phased array telescope systems. Conventionally, feedback control based on image sensors is mainly used to correct the tip/tilt errors caused by disturbances and to keep the LOS stable. However, it is restricted by the sampling rate and time delay of image sensors, leading to a limited closed-loop bandwidth. Disturbances in the middle and high frequencies are hard to suppress. In this paper, disturbance-propagation-characteristics-based feedforward control is proposed to overcome these problems. A theoretical imaging model of the phased array telescope is developed to analyze the LOS disruption caused by disturbance. In addition, to improve the disturbance suppression bandwidth and correction accuracy of the system, the disturbance propagation characteristics of the phased array telescope system are analyzed. Combined with the disturbance feedforward, targeted compensation is achieved for the sub-apertures. Finally, a comparative experiment is carried out based on the self-developed Fizeau phased array telescope system to verify the superiority of the proposed method.

2.
Helicobacter ; 26(2): e12787, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33586844

RESUMEN

BACKGROUND: Flagella-mediated motility is both a crucial virulence determinant of Helicobacter pylori and a factor associated with gastrointestinal diseases. Flagellar formation requires flagellins to be glycosylated with pseudaminic acid (Pse), a process that has been extensively studied. However, the transfer of Pse to flagellins remains poorly understood. Therefore, the aim of this study is to characterize a putative glycosyltransferase jhp0106 in flagellar formation. MATERIALS AND METHODS: Western blotting and chemical deglycosylation were performed to examine FlaA glycosylation. Protein structural analyses were executed to identify the active site residues of Jhp0106, while the Jhp0106-FlaA interaction was examined using a bacterial two-hybrid assay. Lastly, site-directed mutants with mutated active site residues in the jhp0106 gene were generated and investigated using a motility assay, Western blotting, cDNA-qPCR analysis, and electron microscopic examination. RESULTS: Loss of flagellar formation in the Δjhp0106 mutant was confirmed to be associated with non-glycosylated FlaA. Furthermore, three active site residues of Jhp0106 (S350, F376, and E415) were identified within a potential substrate-binding region. The interaction between FlaA and Jhp0106, Jhp0106::S350A, Jhp0106::F376A, or Jhp0106::E415A was determined to be significant. As well, the substitution of S350A, F376A, or E415A in the site-directed Δjhp0106 mutants resulted in impaired motility, deficient FlaA glycosylation, and lacking flagella. However, these phenotypic changes were regardless of flaA expression, implying an indefinite proteolytic degradation of FlaA occurred. CONCLUSIONS: This study demonstrated that Jhp0106 (PseE) binds to FlaA mediating FlaA glycosylation and flagellar formation. Our discovery of PseE has revealed a new glycosyltransferase family responsible for flagellin glycosylation in pathogens.


Asunto(s)
Glicosiltransferasas , Infecciones por Helicobacter , Helicobacter pylori , Secuencia de Aminoácidos , Flagelos , Flagelina , Humanos
3.
iScience ; 25(6): 104405, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35633940

RESUMEN

Intervertebral disc (IVD) degeneration, which is common among elderly individuals, mainly manifests as low back pain and is caused by structural deterioration of the nucleus pulposus (NP) due to physiological mechanical stress. NP mesenchymal stem cells (NPMSCs) around the IVD endplate have multidirectional differentiation potential and can be used for tissue repair. To define favorable conditions for NPMSC proliferation and differentiation into chondroid cells for NP repair, the present study simulated periodic mechanical stress (PMS) of the NP under physiological conditions using MSC chondrogenic differentiation medium and recombinant human BMP-2 (rhBMP-2). rhBMP-2 effectively promoted NPMSC proliferation and differentiation. To clarify the mechanism of action of rhBMP-2, integrin alpha 1 (ITG A1) and BMP-2 were inhibited. PMS regulated the BMP-2/Smad1/RUNX2 pathway through ITG A1 and promoted NPMSC proliferation and differentiation. During tissue-engineered NP construction, PMS can effectively reduce osteogenic differentiation and promote extracellular matrix protein synthesis to enhance structural NP recovery.

4.
Int J Gen Med ; 14: 1239-1249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859492

RESUMEN

BACKGROUND: Pulmonary thromboembolism (PTE) is a common disease which may be a serious condition and has high mortality. Recently, it has been shown that circRNAs play an important role in the development of various diseases, including thromboembolic disease. However, circRNAs expression profiling is not clear in PTE, this study aims to identify the circRNAs expressed in PTE and to elucidate their possible role in pathophysiology of PTE. METHODS: A total of 5 patients with CTPA-confirmed PTE and 5 healthy controls were recruited for the present study. The circRNAs expression profile was analyzed by microarray. RESULTS: In total, 256 differentially expressed circRNAs (up 142, down114) and 1162 mRNA (up 446, down 716) were summarized by analyzing the circRNAs microarray data. The top 3 up-regulated and 3 down-regulated circRNAs were validated by Real-Time Polymerase Chain Reaction (qRT-PCR). Two differentially expressed circRNAs (hsa_circ_0000891, hsa_circ_0043506) were selected for further analysis. Finally, we construct a circRNA-miRNA-mRNA ceRNA network with a bioinformatic prediction tool. Pathway analysis shows that the enriched mRNAs targets take part in Protein processing in endoplasmic reticulum, Systemic lupus erythematosus, Endocytosis, Spliceosome, HTLV-I infection and Ubiquitin mediated proteolysis. CONCLUSION: Our findings indicated that aberrantly expressed circRNAs (hsa_circ_0000891, hsa_circ_0043506) may be involved in the development of PTE.

5.
Dev Comp Immunol ; 67: 177-188, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27756688

RESUMEN

Prohibitin2 (PHB2), a potential tumor suppressor protein, plays important roles in inhibition of cell cycle progression, transcriptional regulation, apoptosis and the mitochondrial respiratory chain. To explore its potential roles in crustaceans' immune responses we have identified and characterized LvPHB2, a 891 bp gene encoding a 297 amino acids protein in the shrimp Litopenaeus vannamei. Expression analyses showed that LvPHB2 is expressed in all examined tissues, and largely present in cytoplasm, correlating with its known anti-oxidation function in mitochondria. Luciferase reporter assays showed that over-expression of LvPHB2 could activate the p53 pathway, indicating that it might participate in apoptosis regulation. Quantitative real-time PCR revealed that infection with Vibrio alginolyticus induces its up-regulation in hepatopancreas. Moreover, RNAi knock-down of LvPHB2 in vivo raises mortality rates of L. vannamei infected by V. alginolyticus, and affects expression of STAT3, Caspase3 and p53 genes. We found significantly higher reactive oxygen species production, DNA damage and apoptosis rates in LvPHB2-silenced shrimp challenged with V. alginolyticus than in controls injected with a Green Fluorescent Protein-silencing construct. Our results suggest that LvPHB2 plays a vital role in shrimp responses to V. alginolyticus infection through its participation in regulation of oxidants and apoptosis.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Mitocondrias/metabolismo , Penaeidae/inmunología , Proteínas Represoras/metabolismo , Vibriosis/inmunología , Vibrio alginolyticus/inmunología , Animales , Apoptosis , Proteínas de Artrópodos/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Células Cultivadas , Inmunidad Innata , Prohibitinas , ARN Interferente Pequeño/genética , Proteínas Represoras/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA