Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(29): e2203701119, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858304

RESUMEN

Conjugated polymers usually require strategies to expand the range of wavelengths absorbed and increase solubility. Developing effective strategies to enhance both properties remains challenging. Herein, we report syntheses of conjugated polymers based on a family of metalla-aromatic building blocks via a polymerization method involving consecutive carbyne shuttling processes. The involvement of metal d orbitals in aromatic systems efficiently reduces band gaps and enriches the electron transition pathways of the chromogenic repeat unit. These enable metalla-aromatic conjugated polymers to exhibit broad and strong ultraviolet-visible (UV-Vis) absorption bands. Bulky ligands on the metal suppress π-π stacking of polymer chains and thus increase solubility. These conjugated polymers show robust stability toward light, heat, water, and air. Kinetic studies using NMR experiments and UV-Vis spectroscopy, coupled with the isolation of well-defined model oligomers, revealed the polymerization mechanism.

2.
Chem Soc Rev ; 53(4): 1892-1914, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38230701

RESUMEN

Molecular assembly is the process of organizing individual molecules into larger structures and complex systems. The self-assembly approach is predominantly utilized in creating artificial molecular assemblies, and was believed to be the primary mode of molecular assembly in living organisms as well. However, it has been shown that the assembly of many biological complexes is "catalysed" by other molecules, rather than relying solely on self-assembly. In this review, we summarize these catalysed-assembly (catassembly) phenomena in living organisms and systematically analyse their mechanisms. We then expand on these phenomena and discuss related concepts, including catalysed-disassembly and catalysed-reassembly. Catassembly proves to be an efficient and highly selective strategy for synergistically controlling and manipulating various noncovalent interactions, especially in hierarchical molecular assemblies. Overreliance on self-assembly may, to some extent, hinder the advancement of artificial molecular assembly with powerful features. Furthermore, inspired by the biological catassembly phenomena, we propose guidelines for designing artificial catassembly systems and developing characterization and theoretical methods, and review pioneering works along this new direction. Overall, this approach may broaden and deepen our understanding of molecular assembly, enabling the construction and control of intelligent assembly systems with advanced functionality.

3.
Langmuir ; 40(11): 5959-5967, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38449109

RESUMEN

Iodine radioisotopes, produced or released during nuclear-related activities, severely affect human health and the environment. The efficient removal of radioiodine from both aqueous and vapor phases is crucial for the sustainable development of nuclear energy. In this study, we propose an "N-heteroatom engineering" strategy to design three porous organic cages with N-containing functional groups for efficient iodine capture. Among the molecular cages investigated, FT-Cage incorporating tertiary amine groups and RT-Cage with secondary amine groups show higher adsorption capacity and much faster iodine release compared to IT-Cage with imine groups. Detailed investigations demonstrate the superiority of amine groups, along with the influence of crystal structures and porosity, for iodine capture. These findings provide valuable insights for the design of porous organic cages with enhanced capabilities for capturing iodine.

4.
J Am Chem Soc ; 145(32): 17795-17804, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37527407

RESUMEN

The manipulation of chirality in molecular entities that rapidly interconvert between enantiomeric forms is challenging, particularly at the supramolecular level. Advances in controlling such dynamic stereochemical systems offer opportunities to understand chiral symmetry breaking and homochirality. Herein, we report the synthesis of a face-rotating tetrahedron (FRT), an organic molecular cage composed of tridurylborane facial units that undergo stereomutations between enantiomeric trefoil propeller-like conformations. After resolution, we show that the racemization barrier of the enantiopure FRT can be regulated in situ through the reversible binding of fluoride anions onto the tridurylborane moieties. Furthermore, the addition of an enantiopure phenylethanol to the FRT can effectively induce chirality of the molecular cage by preferentially binding to one of its enantiomeric conformers. This study presents a new paradigm for controlling dynamic chirality in supramolecular systems, which may have implications for asymmetric synthesis and dynamic stereochemistry.

5.
Angew Chem Int Ed Engl ; 62(32): e202305489, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37310692

RESUMEN

The development of conjugated polymers especially n-type polymer semiconductors is powered by the design and synthesis of electron-deficient building blocks. Herein, a strong acceptor building block with di-metallaaromatic structure was designed and synthesized by connecting two electron-deficient metallaaromatic units through a π-conjugated bridge. Then, a double-monomer polymerization methodology was developed for inserting it into conjugated polymer scaffolds to yield metallopolymers. The isolated well-defined model oligomers indicated polymer structures. Kinetic studies based on nuclear magnetic resonance and ultraviolet-visible spectroscopies shed light on the polymerization process. Interestingly, the resulted metallopolymers with dπ -pπ conjugations are very promising electron transport layer materials which can boost photovoltaic performance of an organic solar cell, with power conversion efficiency up to 18.28 % based on the PM6 : EH-HD-4F non-fullerene system. This work not only provides a facile route to construct metallaaromatic conjugated polymers with various functional groups, but also discovers their potential applications for the first time.

6.
J Am Chem Soc ; 144(42): 19410-19416, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36223688

RESUMEN

Trace water in organic solvents can play a crucial role in the construction of supramolecular assemblies, which has not gained enough attention until very recent years. Herein, we demonstrate that residual water in organic solvents plays a decisive role in the regulation of the evolution of assembled structures and their functionality. By adding Mg(ClO4)2 into a multi-component organic solution containing terpyridine-based ligand 3Tpy and monodentate imidazole-based ligand M2, the system underwent an unexpected kinetic evolution. Metallo-supramolecular polymers (MSP) formed first by the coordination of 3Tpy and Mg2+, but they subsequently decomposed due to the interference of M2, resulting in a transient MSP system. Further investigation revealed that this occurred because residual water in the solvent and M2 cooperatively coordinated with Mg2+. This allowed M2 to capture Mg2+ from MSP, which led to depolymerization. However, owing to the slow reaction between trace water/M2/Mg2+, the formation of MSP still occurred first. Therefore, water regulated both the thermodynamics and kinetics of the system and was the key factor for constructing the transient MSP. Fine-tuning the water content and other assembly motifs regulated the assembly evolution pathway, tuned the MSP lifetime, and made the luminescent color of the system undergo intriguing transition processes over time.


Asunto(s)
Imidazoles , Agua , Agua/química , Ligandos , Solventes/química , Polímeros/química
7.
Chemistry ; 27(37): 9508-9513, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33899293

RESUMEN

Quantitatively predicting the reactivity of dynamic covalent reaction is essential to understand and rationally design complex structures and reaction networks. Herein, the reactivity of aldehydes and amines in various rapid imine formation in aqueous solution by microfluidic NMR spectroscopy was quantified. Investigation of reaction kinetics allowed to quantify the forward rate constants k+ by an empirical equation, of which three independent parameters were introduced as reactivity parameters of aldehydes (SE , E) and amines (N). Furthermore, these reactivity parameters were successfully used to predict the unknown forward rate constants of imine formation. Finally, two competitive reaction networks were rationally designed based on the proposed reactivity parameters. Our work has demonstrated the capability of microfluidic NMR spectroscopy in quantifying the kinetics of label-free chemical reactions, especially rapid reactions that are complete in minutes.


Asunto(s)
Iminas , Microfluídica , Aminas , Cinética , Espectroscopía de Resonancia Magnética
8.
J Am Chem Soc ; 142(38): 16223-16228, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32886877

RESUMEN

Discovering novel families of molecular polyhedra through graph theory has attracted increasing interest. Nevertheless, the design principles of molecular polyhedra based on graph theory remain elusive, especially for those containing five-node units. Herein, we construct a series of chiral truncated face-rotating polyhedra (T-FRP) from pentagonal pentaphenylpyrrole (PPP) derivatives and chiral diamines. Graph theory is used to elucidate the geometry of these novel T-FRP, which represent a new family of molecular polyhedra. The phenyl flipping of PPP faces in these T-FRP is significantly restricted, thus making T-FRP chiral and strongly emissive in solution. In addition, T-FRP also generate circularly polarized luminescence. This study provides new insights into the rational design of novel molecular polyhedra through graph theory.

9.
J Am Chem Soc ; 140(6): 2355-2362, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29357236

RESUMEN

Virus-like particles (VLPs) have been created from luminescent Pt(II) complex amphiphiles, able to form supramolecular structures in water solutions, that can be encapsulated or act as templates of cowpea chlorotic mottle virus capsid proteins. By virtue of a bottom-up molecular design, icosahedral and nonicosahedral (rod-like) VLPs have been constructed through diverse pathways, and a relationship between the molecular structure of the complexes and the shape and size of the VLPs has been observed. A deep insight into the mechanism for the templated formation of the differently shaped VLPs was achieved, by electron microscopy measurements (TEM and STEM) and bulk analysis (FPLC, DLS, photophysical investigations). Interestingly, the obtained VLPs can be visualized by their intense emission at room temperature, generated by the self-assembly of the Pt(II) complexes. The encapsulation of the luminescent species is further verified by their higher emission quantum yields inside the VLPs, which is due to the confinement effect of the protein cage. These hybrid materials demonstrate the potential of tailor-made supramolecular systems able to control the assembly of biological building blocks.

10.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt B): 2341-2348, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29247836

RESUMEN

Neuroblastoma is a highly complex and heterogeneous cancer in children. Acquired genomic alterations including MYCN amplification, 1p deletion and 11q deletion are important risk factors and biomarkers in neuroblastoma. Here, we performed a co-expression-based gene network analysis to study the intrinsic association between specific genomic changes and transcriptome organization. We identified multiple gene coexpression modules which are recurrent in two independent datasets and associated with functional pathways including nervous system development, cell cycle, immune system process and extracellular matrix/space. Our results also indicated that modules involved in nervous system development and cell cycle are highly associated with MYCN amplification and 1p deletion, while modules responding to immune system process are associated with MYCN amplification only. In summary, this integrated analysis provides novel insights into molecular heterogeneity and pathogenesis of neuroblastoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 1/genética , Amplificación de Genes , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neuroblastoma , Transcriptoma , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo
11.
J Am Chem Soc ; 138(50): 16372-16379, 2016 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-27935301

RESUMEN

Artificial nanochannels, inheriting smart gating functions of biological ion channels, promote the development of artificial functional nanofluidic devices for high-performance biosensing and electricity generation. However, gating states of the artificial nanochannels have been mainly realized through chemical modification of the channels with responsive molecules, and their gating states cannot be further regulated once the nanochannel is modified. In this work, we employed a new supramolecular layer-by-layer (LbL) self-assembly method to achieve reversible and adjustable multiple gating features in nanofluidic diodes. Initially, a self-assembly precursor was modified into a single conical nanochannel, then host molecule-cucurbit[8]uril (CB[8]) and guest molecule, a naphthalene derivative, were self-assembled onto the precursor through an LbL method driven by host-enhanced π-π interaction, forming supramolecular monolayer or multilayers on the inner surface of the channel. These self-assemblies with different layer numbers possessed remarkable charge effects and steric effects, exhibiting a capability to regulate the surface charge density and polarity, the effective diameter, and the geometric asymmetry of the single nanochannel, realizing reversible gating of the single nanochannel among multiple rectification and ion-conduction states. As an example of self-assembly of supramolecular networks in nanoconfinements, this work provides a new approach for enhancing functionalities of artificial nanochannels by LbL supramolecular self-assemblies. Meanwhile, since the host molecule, CB[8], used in this work can interact with different kinds of biomolecules and stimuli-responsive chemical species, this work can be further extended to build a novel stable multiple-state research platform for a variety of uses such as sensing and controllable release.

12.
Chemistry ; 22(44): 15570-15582, 2016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27535817

RESUMEN

The study of protein self-assembly has attracted great interest over the decades, due to the important role that proteins play in life. In contrast to the major achievements that have been made in the fields of DNA origami, RNA, and synthetic peptides, methods for the design of self-assembling proteins have progressed more slowly. This Concept article provides a brief overview of studies on native protein and artificial scaffold assemblies and highlights advances in designing self-assembling proteins. The discussions are focused on design strategies for self-assembling proteins, including protein fusion, chemical conjugation, supramolecular, and computational-aided de novo design.


Asunto(s)
Proteínas/química , Modelos Moleculares , Péptidos/síntesis química , Péptidos/química
13.
Angew Chem Int Ed Engl ; 53(21): 5351-5, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24711345

RESUMEN

A new method in which supramolecular polymerization is promoted and controlled through self-sorting is reported. The bifunctional monomer containing p-phenylene and naphthalene moieties was prepared. Supramolecular polymerization is promoted by selective recognition between the p-phenylene group and cucurbit[7]uril (CB[7]), and 2:1 complexation of the naphthalene groups with cucurbit[8]uril (CB[8]). The process can be controlled by tuning the CB[7] content. This development will enrich the field of supramolecular polymers with important advances towards the realization of molecular-weight and structural control.

14.
Langmuir ; 29(40): 12375-9, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24024646

RESUMEN

Supramolecular glycolipid has been fabricated based on ternary complex system, which is composed of naphthyl glucosamine (GlcNap), alkyl viologen (RV8), and cucurbit[8]uril (CB[8]). CB[8] plays a key role to connect the other two building blocks together, and the process is driven by host-enhanced charge transfer interaction. Compared with the classic glycolipids, supramolecular glycolipids display redox responsiveness. Supramolecular glycolipids are able to self-assemble in water to form spherical aggregations, such as vesicle like structure. In addition, spherical aggregations can specifically interact with Concanavalin A, indicating that the carbohydrate groups are available on the surfaces of the aggregates.


Asunto(s)
Glucolípidos/química , Compuestos Macrocíclicos/química , Micelas
15.
Langmuir ; 29(42): 12909-14, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-23927076

RESUMEN

The host-guest chemistry of cucurbiturils and the photochemistry of azastilbene derivatives are combined for the rationally adjusting multicolor emissions through forming different host-guest complexes and their corresponding photochemical products. Cucurbit[8]uril (CB[8]) can bind with azastilbene derivatives to form supramolecular polymers emitting orange light. The supramolecular polymers further facilitate the [2 + 2] cycloaddition of C═C bonds in azastilbenes by UV irradiation, emitting blue light. Different from CB[8], cucurbit[7]uril (CB[7]) encapsulates azastilbene derivatives to form a dumbbell-shaped host-guest complex, emitting dark-purple light. This dumbbell-shaped host-guest complex undergoes cis-isomerization after UV irradiation, thus emitting green light. Therefore, this strategy is promising for fabricating advanced stimuli-responsive fluorescent materials.

16.
ACS Appl Mater Interfaces ; 15(10): 13545-13553, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36868562

RESUMEN

The rational design of stimuli-responsive materials requires a deep understanding of the structure-activity relationship. Herein, we proposed an intramolecular conformation-locking strategy─incorporating flexible tetraphenylethylene (TPE) luminogens into the rigid scaffold of a molecular cage─to produce a molecular photoswitch with dual outputs of luminescence and photochromism in solution and in the solid states at once. The molecular cage scaffold, which restricts the intramolecular rotations of the TPE moiety, not only helps to preserve the luminescence of TPE in a dilute solution but facilitates the reversible photochromism on account of the intramolecular cyclization/cycloreversion reactions. Furthermore, we demonstrate assorted applications of this multiresponsive molecular cage, e.g., photo-switchable patterning, anticounterfeiting, and selective vapochromism sensing.

17.
J Mater Chem B ; 11(38): 9084-9098, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37697810

RESUMEN

Virus-like particles (VLPs) are self-assembled supramolecular structures found in nature, often used for compartmentalization. Exploiting their inherent properties, including precise nanoscale structures, monodispersity, and high stability, these architectures have been widely used as nanocarriers to protect or enrich catalysts, facilitating catalytic reactions and avoiding interference from the bulk solutions. In this review, we summarize the current progress of virus-like particles (VLPs)-based nanoreactors. First, we briefly introduce the physicochemical properties of the most commonly used virus particles to understand their roles in catalytic reactions beyond the confined space. Next, we summarize the self-assembly of nanoreactors forming higher-order hierarchical structures, highlighting the emerging field of nanoreactors as artificial organelles and their potential biomedical applications. Finally, we discuss the current findings and future perspectives of VLPs-based nanoreactors.


Asunto(s)
Nanotecnología , Virión , Catálisis
18.
J Mater Chem B ; 11(33): 7933-7941, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37306104

RESUMEN

A generic strategy to construct virus protein-based hybrid nanomaterials is reported by using a macromolecular glue inspired by mussel adhesion. Commercially available poly(isobutylene-alt-maleic anhydride) (PiBMA) modified with dopamine (PiBMAD) is designed as this macromolecular glue, which serves as a universal adhesive material for the construction of multicomponent hybrid nanomaterials. As a proof of concept, gold nanorods (AuNRs) and single-walled carbon nanotubes (SWCNTs) are initially coated with PiBMAD. Subsequently, viral capsid proteins from the Cowpea Chlorotic Mottle Virus (CCMV) assemble around the nano-objects templated by the negative charges of the glue. With virtually unchanged properties of the rods and tubes, the hybrid materials might show improved biocompatibility and can be used in future studies toward cell uptake and delivery.


Asunto(s)
Nanotubos de Carbono , Proteínas Virales , Oro
20.
Chem Sci ; 13(46): 13930-13937, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36544718

RESUMEN

Inspired by life assembly systems, the construction of transient assembly systems with spatiotemporal control is crucial for developing intelligent materials. A widely adopted strategy is to couple the self-assembly with chemical reaction networks. However, orchestrating the kinetics of multiple reactions and assembly/disassembly processes without crosstalk in homogeneous solutions is not an easy task. To address this challenge, we propose a generic strategy by separating components into different phases, therefore, the evolution process of the system could be easily regulated by controlling the transport of components through different phases. Interference of multiple components that are troublesome in homogeneous systems could be diminished. Meanwhile, limited experimental parameters are involved in tuning the mass transfer instead of the complex kinetic matching and harsh reaction selectivity requirements. As a proof of concept, a transient metallo-supramolecular polymer (MSP) with dynamic luminescent color was constructed in an oil-water biphasic system by controlling the diffusion of the deactivator (water molecules) from the water phase into the oil phase. The lifetime of transient MSP could be precisely regulated not only by the content of chemical fuel, but also factors that affect the efficiency of mass transfer in between phases, such as the volume of the water phase, the stirring rate, and the temperature. We believe this strategy can be further extended to multi-compartment systems with passive diffusion or active transport of components, towards life-like complex assembly systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA