Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Immunol ; 20(2): 183-194, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643264

RESUMEN

Intestinal stem cells (ISCs) are maintained by stemness signaling for precise modulation of self-renewal and differentiation under homeostasis. However, the way in which intestinal immune cells regulate the self-renewal of ISCs remains elusive. Here we found that mouse and human Lgr5+ ISCs showed high expression of the immune cell-associated circular RNA circPan3 (originating from the Pan3 gene transcript). Deletion of circPan3 in Lgr5+ ISCs impaired their self-renewal capacity and the regeneration of gut epithelium in a manner dependent on immune cells. circPan3 bound mRNA encoding the cytokine IL-13 receptor subunit IL-13Rα1 (Il13ra1) in ISCs to increase its stability, which led to the expression of IL-13Rα1 in ISCs. IL-13 produced by group 2 innate lymphoid cells in the crypt niche engaged IL-13Rα1 on crypt ISCs and activated signaling mediated by IL-13‒IL-13R, which in turn initiated expression of the transcription factor Foxp1. Foxp1 is associated with ß-catenin in rendering its nuclear translocation, which caused activation of the ß-catenin pathway and the maintenance of Lgr5+ ISCs.


Asunto(s)
Autorrenovación de las Células/inmunología , Interleucina-13/metabolismo , Mucosa Intestinal/inmunología , ARN/metabolismo , Células Madre/fisiología , Animales , Proteínas Portadoras/genética , Diferenciación Celular/inmunología , Autorrenovación de las Células/genética , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/inmunología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Femenino , Humanos , Interleucina-13/inmunología , Subunidad alfa1 del Receptor de Interleucina-13/genética , Subunidad alfa1 del Receptor de Interleucina-13/inmunología , Subunidad alfa1 del Receptor de Interleucina-13/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , ARN/genética , ARN/inmunología , ARN Circular , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regeneración/genética , Regeneración/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , beta Catenina/inmunología , beta Catenina/metabolismo
2.
Nat Immunol ; 18(5): 499-508, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28319097

RESUMEN

Innate lymphoid cells (ILCs) communicate with other hematopoietic and nonhematopoietic cells to regulate immunity, inflammation and tissue homeostasis. How ILC lineages develop and are maintained remains largely unknown. In this study we observed that a divergent long noncoding RNA (lncRNA), lncKdm2b, was expressed at high levels in intestinal group 3 ILCs (ILC3s). LncKdm2b deficiency in the hematopoietic system led to reductions in the number and effector functions of ILC3s. LncKdm2b expression sustained the maintenance of ILC3s by promoting their proliferation through activation of the transcription factor Zfp292. Mechanistically, lncKdm2b recruited the chromatin organizer Satb1 and the nuclear remodeling factor (NURF) complex onto the Zfp292 promoter to initiate its transcription. Deletion of Zfp292 or Bptf also abrogated the maintenance of ILC3s, leading to susceptibility to bacterial infection. Therefore, our findings reveal that lncRNAs may represent an additional layer of regulation of ILC development and function.


Asunto(s)
Infecciones Bacterianas/genética , Proteínas F-Box/genética , Inmunidad Innata , Histona Demetilasas con Dominio de Jumonji/genética , Linfocitos/fisiología , ARN Largo no Codificante/genética , Animales , Antígenos Nucleares/genética , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Susceptibilidad a Enfermedades , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Activación Transcripcional
3.
Nature ; 589(7841): 270-275, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33116299

RESUMEN

There is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19. Nearly 25% of these patients also have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes1. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high-throughput screen of drugs approved by the FDA (US Food and Drug Administration) and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid and quinacrine dihydrochloride. Treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Colon/citología , Evaluación Preclínica de Medicamentos/métodos , Pulmón/citología , Organoides/efectos de los fármacos , Organoides/virología , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19/prevención & control , Colon/efectos de los fármacos , Colon/virología , Aprobación de Drogas , Femenino , Xenoinjertos/efectos de los fármacos , Humanos , Técnicas In Vitro , Pulmón/efectos de los fármacos , Pulmón/virología , Masculino , Ratones , Organoides/citología , Organoides/metabolismo , SARS-CoV-2/genética , Estados Unidos , United States Food and Drug Administration , Tropismo Viral , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
4.
Nat Methods ; 19(4): 418-428, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396481

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the deadliest pandemics in history. SARS-CoV-2 not only infects the respiratory tract, but also causes damage to many organs. Organoids, which can self-renew and recapitulate the various physiology of different organs, serve as powerful platforms to model COVID-19. In this Perspective, we overview the current effort to apply both human pluripotent stem cell-derived organoids and adult organoids to study SARS-CoV-2 tropism, host response and immune cell-mediated host damage, and perform drug discovery and vaccine development. We summarize the technologies used in organoid-based COVID-19 research, discuss the remaining challenges and provide future perspectives in the application of organoid models to study SARS-CoV-2 and future emerging viruses.


Asunto(s)
COVID-19 , Células Madre Pluripotentes , Adulto , Humanos , Organoides , Pandemias , SARS-CoV-2
6.
EMBO J ; 39(13): e103786, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32449550

RESUMEN

Lgr5+ intestinal stem cells (ISCs) exhibit self-renewal and differentiation features under homeostatic conditions, but the mechanisms controlling Lgr5 + ISC self-renewal remain elusive. Here, we show that the chromatin remodeler SRCAP is highly expressed in mouse intestinal epithelium and ISCs. Srcap deletion impairs both self-renewal of ISCs and intestinal epithelial regeneration. Mechanistically, SRCAP recruits the transcriptional regulator REST to the Prdm16 promoter and induces expression of this transcription factor. By activating PPARδ expression, Prdm16 in turn initiates PPARδ signaling, which sustains ISC stemness. Rest or Prdm16 deficiency abrogates the self-renewal capacity of ISCs as well as intestinal epithelial regeneration. Collectively, these data show that the SRCAP-REST-Prdm16-PPARδ axis is required for self-renewal maintenance of Lgr5 + ISCs.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Mucosa Intestinal/enzimología , Transducción de Señal , Células Madre/enzimología , Adenosina Trifosfatasas/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Humanos , Mucosa Intestinal/citología , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Células Madre/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Circ Res ; 130(7): 963-977, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35255712

RESUMEN

BACKGROUND: Increasing evidence suggests that cardiac arrhythmias are frequent clinical features of coronavirus disease 2019 (COVID-19). Sinus node damage may lead to bradycardia. However, it is challenging to explore human sinoatrial node (SAN) pathophysiology due to difficulty in isolating and culturing human SAN cells. Embryonic stem cells (ESCs) can be a source to derive human SAN-like pacemaker cells for disease modeling. METHODS: We used both a hamster model and human ESC (hESC)-derived SAN-like pacemaker cells to explore the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the pacemaker cells of the heart. In the hamster model, quantitative real-time polymerase chain reaction and immunostaining were used to detect viral RNA and protein, respectively. We then created a dual knock-in SHOX2:GFP;MYH6:mCherry hESC reporter line to establish a highly efficient strategy to derive functional human SAN-like pacemaker cells, which was further characterized by single-cell RNA sequencing. Following exposure to SARS-CoV-2, quantitative real-time polymerase chain reaction, immunostaining, and RNA sequencing were used to confirm infection and determine the host response of hESC-SAN-like pacemaker cells. Finally, a high content chemical screen was performed to identify drugs that can inhibit SARS-CoV-2 infection, and block SARS-CoV-2-induced ferroptosis. RESULTS: Viral RNA and spike protein were detected in SAN cells in the hearts of infected hamsters. We established an efficient strategy to derive from hESCs functional human SAN-like pacemaker cells, which express pacemaker markers and display SAN-like action potentials. Furthermore, SARS-CoV-2 infection causes dysfunction of human SAN-like pacemaker cells and induces ferroptosis. Two drug candidates, deferoxamine and imatinib, were identified from the high content screen, able to block SARS-CoV-2 infection and infection-associated ferroptosis. CONCLUSIONS: Using a hamster model, we showed that primary pacemaker cells in the heart can be infected by SARS-CoV-2. Infection of hESC-derived functional SAN-like pacemaker cells demonstrates ferroptosis as a potential mechanism for causing cardiac arrhythmias in patients with COVID-19. Finally, we identified candidate drugs that can protect the SAN cells from SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Ferroptosis , Humanos , Miocitos Cardíacos/metabolismo , SARS-CoV-2 , Nodo Sinoatrial/metabolismo
8.
Macromol Rapid Commun ; : e2400083, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537692

RESUMEN

Photoactive conjugated microporous polymers (CMPs) as heterogeneous photocatalysts provide a sustainable alternative to classical metal-based semiconductor photosensitizers. However, previously reported CMPs are typically synthesized through metal catalyzed coupling reactions, which bears product separation, but also increases the price of materials. Herein, a new type of sp2 carbon linked DCM-CMPs are successfully designed and synthesized by organic base catalyzed Knoevenagel reaction using 2,6-Dimethyl-4H-pyran-4-ylidene-malononitrile and aromatic polyaldehydes as monomers. The new polymers feature inherent porosity, excellent stability, and fully π-conjugated skeleton with broad visible-light absorption. They effectively induce the synthesis of benzimidazole compounds under light irradiation, and exhibit wide substrate adaptability with outstanding recyclability.

10.
J Environ Sci (China) ; 125: 362-375, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375921

RESUMEN

Frequent occurrence of harmful algal blooms has already threatened aquatic life and human health. In the present study, floating BiOCl0.6I0.4/ZnO photocatalyst was synthesized in situ by water bath method, and and applied in inactivation of Microcystis aeruginosa under visible light. The composition, morphology, chemical states, optical properties of the photocatalyst were also characterized. The results showed that BiOCl0.6I0.4 exhibited laminated nanosheet structure with regular shape, and the light response range of the composite BZ/EP-3 (BiOCl0.6I0.4/ZnO/EP-3) was tuned from 582 to 638 nm. The results of photocatalytic experiments indicated that BZ/EP-3 composite had stronger photocatalytic activity than a single BiOCl0.6I0.4 and ZnO, and the removal rate of chlorophyll a was 89.28% after 6 hr of photocatalytic reaction. The photosynthetic system was destroyed and cell membrane of algae ruptured under photocatalysis, resulting in the decrease of phycobiliprotein components and the release of a large number of ions (K+, Ca2+ and Mg2+). Furthermore, active species trapping experiment determined that holes (h+) and superoxide radicals (·O2-) were the main active substance for the inactivation of algae, and the p-n mechanism of photocatalyst was proposed. Overall, BZ/EP-3 showed excellent algal removal ability under visible light, providing fundamental theories for practical algae pollution control.


Asunto(s)
Microcystis , Óxido de Zinc , Humanos , Clorofila A , Luz , Floraciones de Algas Nocivas
11.
EMBO J ; 37(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29535137

RESUMEN

Divergent long noncoding RNAs (lncRNAs) represent a major lncRNA biotype in mouse and human genomes. The biological and molecular functions of the divergent lncRNAs remain largely unknown. Here, we show that lncKdm2b, a divergent lncRNA for Kdm2b gene, is conserved among five mammalian species and highly expressed in embryonic stem cells (ESCs) and early embryos. LncKdm2b knockout impairs ESC self-renewal and causes early embryonic lethality. LncKdm2b can activate Zbtb3 by promoting the assembly and ATPase activity of Snf2-related CREBBP activator protein (SRCAP) complex in trans Zbtb3 potentiates the ESC self-renewal in a Nanog-dependent manner. Finally, Zbtb3 deficiency impairs the ESC self-renewal and early embryonic development. Therefore, our findings reveal that lncRNAs may represent an additional layer of the regulation of ESC self-renewal and early embryogenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Embrionarias/metabolismo , ARN Largo no Codificante/genética , Animales , Desarrollo Embrionario , Humanos , Ratones Noqueados
12.
Proc Natl Acad Sci U S A ; 116(40): 19917-19923, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527241

RESUMEN

Chromosomal translocations of MLL1 (Mixed Lineage Leukemia 1) yield oncogenic chimeric proteins containing the N-terminal portion of MLL1 fused with distinct partners. The MLL1-AF10 fusion causes leukemia through recruiting the H3K79 histone methyltransferase DOT1L via AF10's octapeptide and leucine zipper (OM-LZ) motifs. Yet, the precise interaction sites in DOT1L, detailed interaction modes between AF10 and DOT1L, and the functional configuration of MLL1-AF10 in leukeomogenesis remain unknown. Through a combined approach of structural and functional analyses, we found that the LZ domain of AF10 interacts with the coiled-coil domains of DOT1L through a conserved binding mode and discovered that the C-terminal end of the LZ domain and the OM domain of AF10 mediate the formation of a DOT1L-AF10 octamer via tetramerization of the binary complex. We reveal that the oligomerization ability of the DOT1L-AF10 complex is essential for MLL1-AF10's leukemogenic function. These findings provide insights into the molecular basis of pathogenesis by MLL1 rearrangements.


Asunto(s)
Regulación Leucémica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Leucemia/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Factores de Transcripción/metabolismo , Núcleo Celular/metabolismo , Transformación Celular Neoplásica , Escherichia coli/metabolismo , Humanos , Leucina Zippers , Leucemia/patología , Mutación , Proteínas de Fusión Oncogénica/metabolismo , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína
13.
Plant Dis ; 106(1): 260-265, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34402633

RESUMEN

Phoma macdonaldii, the causal agent of sunflower black stem, severely affects sunflower yield and quality. A rapid and sensitive detection method is necessary for diagnosis of this disease. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed for rapid detection of the pathogen from diseased sunflower tissues. The LAMP primers were designed to target the rDNA region of the fungus. The reaction condition was optimized to 60°C water baths for 45 min. The detection limit of the LAMP assay was 100 fg DNA or 10 conidia/g seeds. The LAMP assay was validated by detecting P. macdonaldii from infected sunflower tissue samples, including leaves, stems, and seeds, and applying to seed samples randomly collected from sunflower fields. This LAMP assay will be useful for estimating disease prevalence and implementing sustainable management of sunflower black stem.


Asunto(s)
Ascomicetos , Helianthus , Ascomicetos/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico
14.
AAPS PharmSciTech ; 22(1): 15, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389269

RESUMEN

The present study endeavored to develop orodispersible films (ODFs) containing 30 mg racecadotril for pediatric use, which focuses on improving the compliance of pediatric patients and reducing risk of choking. The challenge of this study is to prepare high drug loading ODFs with successful mechanical and physicochemical properties. Compatibilities between drug and different polymers (hydroxypropyl methylcellulose, HPMC; polyvinyl alcohol, PVA; low-substituted hydroxypropyl cellulose, L-HPC; pullulan, PU) were investigated to select stable and safe film-forming polymers. Afterwards, the study explored the maximum amount of racecadotril incorporated into PVA films and PU films. Subsequently, disintegrant (Lycoat RS720, 4-10%, w/w) and plasticizers (glycerol, 2-6%, w/w) were investigated to reduce disintegration time of PVA films and enhance the flexibility of PU films, respectively. Formulation characteristics (appearance, tensile strength, percent elongation, disintegration time, drug content, weight, thickness, pH value, moisture content, moisture uptake, and Q5min) of prepared ODFs were examined to obtain the optimal compositions of racecadotril ODFs. Differential scanning calorimetry (DSC) study, powder X-ray diffraction (XRD) study, Fourier transform infrared (FTIR) study, comparative in vitro dissolution study, and pharmacokinetic study in Beagle dogs of optimized racecadotril ODFs were then conducted. Eventually, ODFs containing 50% racecadotril, 38% PVA, 7% Lycoat RS720, 2% sucralose, 2% apricot, and 1% titanium dioxide could achieve desirable mechanical properties, disintegrating within a few seconds and releasing more than 85% drug within 5 min in four dissolution media. An in vivo study showed optimized racecadotril ODF and Hidrasec were bioequivalent in Beagle dogs. In summary, ODFs containing 30 mg racecadotril were successfully prepared by solvent casting method, and it was suitable for the administration to the pediatric patients.


Asunto(s)
Antidiarreicos/farmacología , Tiorfan/análogos & derivados , Resinas Acrílicas/química , Administración Oral , Antidiarreicos/administración & dosificación , Rastreo Diferencial de Calorimetría , Celulosa/análogos & derivados , Niño , Formas de Dosificación , Excipientes/química , Humanos , Derivados de la Hipromelosa/química , Técnicas In Vitro , Pediatría , Alcohol Polivinílico/química , Polvos , Solubilidad , Solventes/química , Tiorfan/administración & dosificación , Tiorfan/farmacología , Difracción de Rayos X
15.
AAPS PharmSciTech ; 21(7): 245, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32856178

RESUMEN

The purpose of this study was to investigate the impacts of the formulation parameters on the pharmacokinetics and bioequivalence of risperidone orodispersible film (ODF) using physiologically based pharmacokinetic model. The pharmacokinetic profiles of two risperidone ODFs, which exhibit different in vitro dissolution, were examined in Beagle dogs after supralingual administration. Subsequently, a physiologically based pharmacokinetic (PBPK) model was constructed to evaluate the in vivo performance of risperidone ODF. The parameter sensitivity analysis (PSA) was used to access the impacts of formulation parameters on the pharmacokinetics of risperidone. Moreover, the validated PBPK model was applied to predict human pharmacokinetic profiles and examine the bioequivalence of these two ODFs. These two ODFs displayed similar risperidone pharmacokinetic profiles in dogs. The parameter sensitivity analysis indicated that the changes in the solubility, particle size, particle density, and diffusion coefficient did not have obvious influence on the in vivo properties of risperidone ODF. Alternation of the in vitro complete dissolution time in water from 15 to 30 min led to a 30% decrease in Cmax and 20% of increase in Tmax. AUC0-∞ would be decreased if risperidone was not fully released within 1 h. As both ODFs completely released risperidone within 15 min, the difference in the extent of in vivo absorption, intestinal regional absorption location, and plasma concentration-time curves between these two ODFs was almost negligible. Consequently, a bioequivalence was foreseen in humans. The in vitro cumulative dissolution percentage in water at 15 min was found to be the major determinant on the in vivo properties of risperidone ODF. PBPK modeling appears to be an innovative strategy to guide the development of risperidone ODF.


Asunto(s)
Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Modelos Biológicos , Risperidona/administración & dosificación , Risperidona/farmacocinética , Administración Oral , Animales , Perros , Femenino , Humanos , Masculino , Tamaño de la Partícula , Risperidona/química , Antagonistas de la Serotonina/administración & dosificación , Antagonistas de la Serotonina/química , Antagonistas de la Serotonina/farmacocinética , Solubilidad , Equivalencia Terapéutica
16.
J Hepatol ; 70(5): 918-929, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30582981

RESUMEN

BACKGROUND & AIMS: Liver cancer is the second leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults. The aim of this study was to define the role of the long non-coding RNA lncHDAC2 in the tumorigenesis of HCC. METHODS: CD13+CD133+ cells (hereafter called liver cancer stem cells [CSCs]) and CD13-CD133- cells (referred to as non-CSCs) were sorted from 3 primary HCC tumor tissues and followed by transcriptome microarray. The expression and function of lncHDAC2 were further assessed by northern blot, sphere formation and xenograft tumor models. RESULTS: LncHDAC2 is highly expressed in HCC tumors and liver CSCs. LncHDAC2 promotes the self-renewal of liver CSCs and tumor propagation. In liver CSCs, lncHDAC2 recruits the NuRD complex onto the promoter of PTCH1 to inhibit its expression, leading to activation of Hedgehog signaling. Moreover, HDAC2 expression levels are positively related to HCC severity and PTCH1 levels are negatively related to HCC severity. Additionally, the Smo inhibitor cyclopamine was shown to impair the self-renewal of liver CSCs and suppress tumor propagation. CONCLUSION: Our findings reveal that lncHDAC2 promotes the self-renewal of liver CSCs and tumor propagation by activating the Hedgehog signaling pathway. Downregulating lncHDAC2 is a promising antitumor strategy in HCC. LAY SUMMARY: Liver cancer stem cells harbor high tumor-initiating potential and confer resistance to typical therapies, but the mechanism underlying their self-renewal remains elusive. LncHDAC2 augments the self-renewal of these cells, promoting tumor propagation. In liver cancer stem cells, lncHDAC2 activates Hedgehog signaling to initiate liver tumorigenesis. Therefore, lncHDAC2 and the Hedgehog signaling pathway may serve as biomarkers and potential drug targets for hepatocellular carcinoma.


Asunto(s)
Autorrenovación de las Células , Proteínas Hedgehog/fisiología , Histona Desacetilasa 2/genética , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/fisiología , ARN Largo no Codificante/fisiología , Transducción de Señal , Línea Celular Tumoral , Humanos , Receptor Patched-1/genética , Regiones Promotoras Genéticas , Transducción de Señal/fisiología
17.
J Immunol ; 194(3): 1292-303, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25548215

RESUMEN

NK cells play a pivotal role in innate immune responses against pathogenic infections. However, the underlying mechanisms driving defined NK functions remain largely elusive. In this study, we identified a novel endoplasmic reticulum (ER) membrane protein, ER adaptor protein (ERAdP), which is constitutively expressed in human and mouse NK cells. ERAdP is expressed at low levels in peripheral NK cells of hepatitis B virus-associated hepatocellular carcinoma patients. We show that ERAdP initiates NK cell activation through the NF-κB pathway. Notably, ERAdP interacts with ubiquitin-conjugating enzyme 13 (Ubc13) to potentiate its charging activity. Thus, ERAdP augments Ubc13-mediated NF-κB essential modulator ubiquitination to trigger the Ubc13-mediated NF-κB pathway, leading to NK cell activation. Finally, ERAdP transgenic mice display hyperactivated NK cells that are more resistant to pathogenic infections. Therefore, understanding the mechanism of ERAdP-mediated NK cell activation will provide strategies for treatment of infectious diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Activación de Linfocitos/inmunología , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Enzimas Ubiquitina-Conjugadoras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Citotoxicidad Inmunológica/genética , Retículo Endoplásmico/metabolismo , Activación Enzimática , Expresión Génica , Humanos , Quinasa I-kappa B/metabolismo , Interferón gamma/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Unión Proteica , Ubiquitinación
18.
Int J Biol Macromol ; 254(Pt 1): 127731, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287567

RESUMEN

Ground cherry, Physalis pubescens, is mainly cultivated as a fruit worldwide and popularly used as a food supplement and traditional Chinese medicine. Plants are challenged by external environmental stress and can initiate resistance to the stress through the regulation of pathogenesis-related (PR) proteins. Among PR proteins, PR-5, a thaumatin-like protein (TLP), was identified in many plants and found to be able to enhance stress resistance. However, PR-5 in ground cherry is not characterized and its expression is yet to be understood. In this study, a PR-5 protein PpTLP1 in P. pubescens was firstly identified. Analysis of the amino acid sequences revealed that PpTLP1 was highly similar to PR-NP24 identified in tomato with a difference in only one amino acid. Expression analysis indicated that the PpTLP1 gene was highly expressed in leaf while the PpTLP1 protein was tissue-specifically accumulated in cherry exocarp. Furthermore, the down-regulation of PpTLP1 in ground cherry was induced by NaCl treatment while the up-regulation was promoted by the infection of Sclerotinia sclerotiorum and Botrytis cinerea. This study will provide a new plant resource containing a TLP in Physalis genus and a novel insight for the improvement of postharvest management of ground cherry and other Solanaceae plants.


Asunto(s)
Physalis , Physalis/genética , Proteínas de Plantas/química , Plantas/metabolismo , Secuencia de Aminoácidos , Aditivos Alimentarios
19.
ChemSusChem ; 17(11): e202400315, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38538541

RESUMEN

Covalent organic framework (COF) nanosheets have recently garnered great attention as a new class of functional materials. As one of the sustainable processes, however, the photocatalytic organic synthesis in water has not been investigated using COF nanosheets as a photocatalyst to date. Herein, we reported the synthesis of a fully conjugated COF nanosheets with carboxyl functional group through a cooperative strategy of chemical exfoliation and group transformation. The new COF nanosheets was found to be an efficient heterogeneous photocatalyst for a wide range of organic synthesis including selective oxidation of sulfides and oxidative coupling of benzylamines in water under visible-light illumination. This work contributes a new roadmap for the design and synthesis of functional COF-based nanosheets, but also further extends the application boundary of the ultrathin COF nanosheets.

20.
Cell Stem Cell ; 31(2): 196-211.e6, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38237586

RESUMEN

COVID-19 patients commonly present with signs of central nervous system and/or peripheral nervous system dysfunction. Here, we show that midbrain dopamine (DA) neurons derived from human pluripotent stem cells (hPSCs) are selectively susceptible and permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection of DA neurons triggers an inflammatory and cellular senescence response. High-throughput screening in hPSC-derived DA neurons identified several FDA-approved drugs that can rescue the cellular senescence phenotype by preventing SARS-CoV-2 infection. We also identified the inflammatory and cellular senescence signature and low levels of SARS-CoV-2 transcripts in human substantia nigra tissue of COVID-19 patients. Furthermore, we observed reduced numbers of neuromelanin+ and tyrosine-hydroxylase (TH)+ DA neurons and fibers in a cohort of severe COVID-19 patients. Our findings demonstrate that hPSC-derived DA neurons are susceptible to SARS-CoV-2, identify candidate neuroprotective drugs for COVID-19 patients, and suggest the need for careful, long-term monitoring of neurological problems in COVID-19 patients.


Asunto(s)
COVID-19 , Células Madre Pluripotentes , Humanos , SARS-CoV-2 , Neuronas Dopaminérgicas , Sistema Nervioso Central
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA