Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Obstet Gynecol ; 230(2): 254.e1-254.e13, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37531989

RESUMEN

BACKGROUND: Hyperglycemia from pregestational diabetes mellitus induces neural tube defects in the developing fetus. Folate supplementation is the only effective way to prevent neural tube defects; however, some cases of neural tube defects are resistant to folate. Excess folate has been linked to higher maternal cancer risk and infant allergy. Therefore, additional interventions are needed. Understanding the mechanisms underlying maternal diabetes mellitus-induced neural tube defects can identify potential targets for preventing such defects. Despite not yet being in clinical use, growing evidence suggests that microRNAs are important intermediates in embryonic development and can serve as both biomarkers and drug targets for disease intervention. Our previous studies showed that maternal diabetes mellitus in vivo activates the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in the developing embryo and that a high glucose condition in vitro reduces microRNA-322 (miR-322) levels. IRE1α is an RNA endonuclease; however, it is unknown whether IRE1α targets and degrades miR-322 specifically or whether miR-322 degradation leads to neural tube defects via apoptosis. We hypothesize that IRE1α can inhibit miR-322 in maternal diabetes mellitus-induced neural tube defects and that restoring miR-322 expression in developing neuroepithelium ameliorates neural tube defects. OBJECTIVE: This study aimed to identify potential targets for preventing maternal diabetes mellitus-induced neural tube defects and to investigate the roles and relationship of a microRNA and an RNA endonuclease in mouse embryos exposed to maternal diabetes mellitus. STUDY DESIGN: To determine whether miR-322 reduction is necessary for neural tube defect formation in pregnancies complicated by diabetes mellitus, male mice carrying a transgene expressing miR-322 were mated with nondiabetic or diabetic wide-type female mice to generate embryos with or without miR-322 overexpression. At embryonic day 8.5 when the neural tube is not yet closed, embryos were harvested for the assessment of 3 miR-322 transcripts (primary, precursor, and mature miR-322), tumor necrosis factor receptor-associated factor 3 (TRAF3), and neuroepithelium cell survival. Neural tube defect incidences were determined in embryonic day 10.5 embryos when the neural tube should be closed if there is no neural tube defect formation. To identify which miR-322 transcript is affected by maternal diabetes mellitus and high glucose conditions, 3 miR-322 transcripts were assessed in embryos from dams with or without diabetes mellitus and in C17.2 mouse neural stem cells treated with different concentrations of glucose and at different time points. To determine whether the endonuclease IRE1α targets miR-322, small interfering RNA knockdown of IRE1α or overexpression of inositol-requiring transmembrane kinase/endoribonuclease 1α by DNA plasmid transfection was used to determine the effect of IRE1α deficiency or overexpression on miR-322 expression. RNA immunoprecipitation was performed to reveal the direct targets of inositol-requiring transmembrane kinase/endoribonuclease 1α. RESULTS: Maternal diabetes mellitus suppressed miR-322 expression in the developing neuroepithelium. Restoring miR-322 expression in the neuroepithelium blocked maternal diabetes mellitus-induced caspase-3 and caspase-8 cleavage and cell apoptosis, leading to a neural tube defect reduction. Reversal of maternal diabetes mellitus-inhibited miR-322 via transgenic overexpression prevented TRAF3 up-regulation in embryos exposed to maternal diabetes mellitus. Activated IRE1α acted as an endonuclease and degraded precursor miR-322, resulting in mature miR-322 reduction. CONCLUSION: This study supports the crucial role of the IRE1α-microRNA-TRAF3 circuit in the induction of neuroepithelial cell apoptosis and neural tube defect formation in pregnancies complicated by diabetes mellitus and identifies IRE1α and miR-322 as potential targets for preventing maternal diabetes mellitus-induced neural tube defects.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Gestacional , MicroARNs , Defectos del Tubo Neural , Embarazo en Diabéticas , Humanos , Embarazo , Masculino , Femenino , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Factor 3 Asociado a Receptor de TNF/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/patología , Embarazo en Diabéticas/genética , Embarazo en Diabéticas/metabolismo , Diabetes Gestacional/genética , Glucosa , Ácido Fólico , Inositol
2.
Adv Exp Med Biol ; 1452: 21-35, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38805123

RESUMEN

Tubulin plays a fundamental role in cellular function and as the subject for microtubule-active agents in the treatment of ovarian cancer. Microtubule-binding proteins (e.g., tau, MAP1/2/4, EB1, CLIP, TOG, survivin, stathmin) and posttranslational modifications (e.g., tyrosination, deglutamylation, acetylation, glycation, phosphorylation, polyamination) further diversify tubulin functionality and may permit additional opportunities to understand microtubule behavior in disease and to develop microtubule-modifying approaches to combat ovarian cancer. Tubulin-based structures that project from suspended ovarian cancer cells known as microtentacles may contribute to metastatic potential of ovarian cancer cells and could represent an exciting novel therapeutic target.


Asunto(s)
Microtúbulos , Metástasis de la Neoplasia , Neoplasias Ováricas , Procesamiento Proteico-Postraduccional , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Femenino , Microtúbulos/metabolismo , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico
3.
Am J Perinatol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729183

RESUMEN

OBJECTIVE: Pregnant women are at increased risk of coronavirus disease 2019 (COVID-19). This could be explained through the prism of physiologic and immunologic changes in pregnancy. In addition, certain immunological reactions originate in the placenta in response to viral infections.This study aimed to investigate whether severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) can infect the human placenta and discuss its implications in the pathogenesis of adverse pregnancy outcomes. STUDY DESIGN: We conducted a retrospective cohort study in which we collected placental specimens from pregnant women who had a laboratory-confirmed SARS-CoV-2 infection. We performed RNA in situ hybridization assay on formalin-fixed paraffin-embedded tissues to establish the in vivo evidence for placental infectivity by this corona virus. In addition, we infected trophoblast isolated from uninfected term human placenta with SARS-CoV-2 variants to further provide in vitro evidence for such an infectivity. RESULTS: There was a total of 21 cases enrolled, which included 5 cases of spontaneous preterm birth (SPTB) and 2 intrauterine fetal demises (IUFDs). Positive staining of positive-sense strand of SARS-CoV-2 virions was detected in 15 placentas including 4 SPTB and both IUFDs. In vitro infection assay demonstrated that SARS-CoV-2 virions were highly capable of infecting both cytotrophoblast and syncytiotrophoblast. CONCLUSION: This study implies that placental SARS-CoV-2 infection may be associated with an increased risk of adverse obstetrical outcomes. KEY POINTS: · SARS-CoV-2 can effectively infect human placenta.. · Such infectivity is confirmed by in vitro experiments.. · Placental SARS-CoV-2 corelates with adverse obstetrical outcomes..

4.
Nano Lett ; 22(6): 2405-2411, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35258308

RESUMEN

Porous ceramics possess great application potential in various fields. However, the contradiction between their pores and their strength have significantly hampered their applications. In this study, we present a simple directional solidification process that relies on its in situ pore forming mechanism to fabricate Al2O3/Y3Al5O12/ZrO2 porous eutectic ceramic composites with a highly dense and nanostructured eutectic skeleton matrix and a lotus-type porous structure. The flexural strength of this porous ceramic composite with a porosity of 34% is 497 MPa at ambient temperature, which is a new record of the strength of all current porous ceramics. This strength can remain at 324 MPa when the temperature increases up to 1773 K because of its refined lamellar structure and strong bonding interface. We demonstrate an interesting application of the directional solidification in efficiently preparing the ultrahigh-strength porous ceramic with high purity. The findings will open a window to the strength of porous ceramics.

5.
Dev Biol ; 477: 241-250, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34052210

RESUMEN

A critical cell type participating in cardiac outflow tract development is a subpopulation of the neural crest cells, the cardiac neural crest cells (NCCs), whose defect causes a spectrum of cardiovascular abnormalities. Accumulating evidence indicates that mTOR, which belongs to the PI3K-related kinase family and impacts multiple signaling pathways in a variety of contexts, plays a pivotal role for NCC development. Here, we investigated functional roles of mTOR for cardiac neural crest development using several lines of mouse genetic models. We found that disruption of mTOR caused NCC defects and failure of cardiac outflow tract separation, which resulted in a spectrum of cardiac defects including persistent truncus arteriosus, ventricular septal defect and ventricular wall defect. Specifically, mutant neural crest cells showed reduced migration into the cardiac OFT and prematurely exited the cell cycle. A number of critical factors and fundamental signaling pathways, which are important for neural crest and cardiomyocyte development, were impaired. Moreover, actin dynamics was disrupted by mTOR deletion. Finally, by phenotyping the neural crest Rptor and Rictor knockout mice respectively, we demonstrate that mTOR acts principally through the mTORC1 pathway for cardiac neural crest cells. Altogether, these data established essential roles of mTOR for cardiac NCC development and imply that dysregulation of mTOR in NCCs may underline a spectrum of cardiac defects.


Asunto(s)
Anomalías Cardiovasculares/genética , Corazón/embriología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Miocardio/metabolismo , Cresta Neural/embriología , Serina-Treonina Quinasas TOR/fisiología , Animales , Células Cultivadas , Eliminación de Gen , Redes y Vías Metabólicas , Ratones , Cresta Neural/metabolismo , Serina-Treonina Quinasas TOR/genética
6.
Gynecol Obstet Invest ; 87(2): 165-172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35526532

RESUMEN

INTRODUCTION: Studies indicate a very low rate of SARS-CoV-2 detection in the placenta or occasionally a low rate of vertical transmission in COVID-19 pregnancy. SARS-CoV-2 Delta variant has become a dominant strain over the world and possesses higher infectivity due to mutations in its spike receptor-binding motif. CASE PRESENTATION: To determine whether SARS-CoV-2 Delta variant has increased potential for placenta infection and vertical transmission, we analyzed SARS-CoV-2 infection in the placenta, umbilical cord, and fetal membrane from a case where an unvaccinated mother and her neonate were COVID-19 positive. A 35-year-old primigravida with COVID-19 underwent an emergent cesarean delivery due to placental abruption in the setting of premature rupture of membranes. The neonate tested positive for SARS-CoV-2 within the first 24 h, and then again on days of life 2, 6, 13, and 21. The placenta exhibited intervillositis, increased fibrin deposition, and syncytiotrophoblast necrosis. Sequencing of viral RNA from fixed placental tissue revealed SAR-CoV-2 B.1.167.2 (Delta) variant. Both spike protein and viral RNA were abundantly present in syncytiotrophoblasts, cytotrophoblasts, umbilical cord vascular endothelium, and fetal membranes. CONCLUSION: We report with strong probability the first SARS-CoV-2 Delta variant transplacental transmission. Placental cells exhibited extensive apoptosis, senescence, and ferroptosis after SARS-CoV-2 Delta infection.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Adulto , COVID-19/diagnóstico , Femenino , Humanos , Recién Nacido , Placenta/irrigación sanguínea , Embarazo , Complicaciones Infecciosas del Embarazo/diagnóstico , ARN Viral , SARS-CoV-2
7.
Dev Biol ; 467(1-2): 77-87, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866472

RESUMEN

We herein report that deletion of mTOR in dental epithelia caused defective development of multiple cell layers of the enamel organ, which culminated in tooth malformation and cystogenesis. Specifically, cells of the stellate reticulum and stratum intermedium were poorly formed, resulting in cystic changes. The pre-ameloblasts failed to elongate along the apical-basal axis and persisted vigorous expression of Sox2 and P63, which are normally downregulated during cytodifferentiation. Expression of amelogenic markers was also attenuated in mutants. Cell proliferation and cell sizes in mutants were significantly reduced over time. Importantly, we found reduced amounts and aberrant aggregations of cytoskeletal components in mutants, along with attenuated expression of cytoskeleton regulator Cdc42, whose epithelial deletion causes a similar phenotype. Moreover, disruption of actin assembly in an organ culture system affected cell proliferation and cytodifferentiation of tooth germs, supporting a causative role of mTOR-regulated cytoskeleton dynamics for the observed phenotype of mTOR mutant mice. In further support of this view, we showed that mTOR overactivation caused increased cytoskeletal component synthesis and assembly, along with accelerated cytodifferentiation in the enamel organ. Finally, we demonstrated that mTOR regulated enamel organ development principally through the mTORC1 pathway.


Asunto(s)
Citoesqueleto/metabolismo , Órgano del Esmalte/embriología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Citoesqueleto/genética , Órgano del Esmalte/citología , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Transgénicos , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Serina-Treonina Quinasas TOR/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo
8.
Am J Obstet Gynecol ; 223(5): 753.e1-753.e14, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32416155

RESUMEN

BACKGROUND: Autophagy is highly active in neuroepithelial cells of the developing neuroepithelium, and impairment of autophagy leads to neural tube defects. In this study, we have found that maternal diabetes suppresses autophagy that leads to neural tube defects and consequent cellular imbalance in the endoplasmic reticulum where critical events occur, leading to the induction of diabetic embryopathy. Because the mammalian target of rapamycin pathway suppresses autophagy, we hypothesized that 70 kDa ribosomal protein S6 kinase 1 (p70S6K1), a major downstream effector of mammalian target of rapamycin, mediates the inhibitory effect of maternal diabetes on autophagy in the developing neuroepithelium. OBJECTIVE: We investigated whether p70S6K1 mediates the inhibitory effect of maternal diabetes on autophagy during neurulation. We also examined whether p70S6K1 deficiency restores autophagy and therefore relieves endoplasmic reticulum stress and inhibits maternal diabetes-induced apoptosis, which leads to reduction in neural tube defect incidence in diabetic embryopathy. STUDY DESIGN: Female p70S6K1 heterogeneous knockout (p70S6K1+/-) mice were bred with male p70S6K1 heterogeneous knockout (p70S6K1+/-) mice to generate wild-type (WT), p70S6K1+/- and p70S6K1 knockout (p70S6K1-/-) embryos. Embryos at embryonic day 8.5 were harvested for the assessment of indices of autophagy, endoplasmic reticulum stress, and apoptosis. Neural tube defect incidence in embryos was determined at embryonic day 10.5. For in vitro studies, small interfering RNA knockdown of p70S6K1 in C17.2 mouse neural stem cells was used to determine the effect of p70S6K1 deficiency on autophagy impairment and endoplasmic reticulum stress under high glucose conditions. RESULTS: Knockout of the Rps6kb1 gene, which encodes for p70S6K1, ameliorated maternal diabetes-induced NTDs and restored autophagosome formation in neuroepithelial cells suppressed by maternal diabetes. Maternal diabetes-suppressed conversion of LC3-I (microtubule-associated protein 1A/1B-light chain 3) to LC3-II, an index of autophagic activity, in neurulation stage embryos was abrogated in the absence of p70S6K1. p70S6K1 knockdown in neural stem cells also restored autophagosome formation and the conversion of LC3-I to LC3-II. The activation of the major unfolded protein response, indicated by phosphorylation of inositol-requiring enzyme 1 alpha, and protein kinase R-like endoplasmic reticulum kinase, and eukaryotic translation initiation factor 2α, and the increase of the endoplasmic reticulum stress marker, C/EBP homologous protein, were induced by maternal diabetes in vivo and high glucose in vitro. Unfolded protein response and endoplasmic reticulum stress induced by maternal diabetes or high glucose were reduced by Rps6kb1 deletion or p70S6K1 knockdown, respectively. Rps6kb1 knockout blocked maternal diabetes-induced caspase cleavage and neuroepithelial cell apoptosis. The superoxide dismutase mimetic Tempol abolished high glucose-induced p70S6K1 activation. CONCLUSION: The study revealed the critical involvement of p70S6K1 in the pathogenesis of diabetic embryopathy.


Asunto(s)
Autofagia/genética , Estrés del Retículo Endoplásmico/genética , Enfermedades Fetales/genética , Células-Madre Neurales/metabolismo , Defectos del Tubo Neural/genética , Embarazo en Diabéticas/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Respuesta de Proteína Desplegada/genética , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Glucemia/metabolismo , Óxidos N-Cíclicos/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Enfermedades Fetales/etiología , Enfermedades Fetales/metabolismo , Glucosa/farmacología , Técnicas In Vitro , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/efectos de los fármacos , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/metabolismo , Células Neuroepiteliales/efectos de los fármacos , Células Neuroepiteliales/metabolismo , Neurulación/genética , Estrés Oxidativo , Embarazo , Embarazo en Diabéticas/metabolismo , Marcadores de Spin , Respuesta de Proteína Desplegada/efectos de los fármacos
9.
Biol Reprod ; 100(4): 1066-1072, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452546

RESUMEN

The mechanism underlying premature ovarian insufficiency remains incompletely understood. Here we report that mice with Per1m/m; Per2m/m double mutations display a decrease in female fertility starting approximately at 20 weeks old, with significantly less pups born from 32 weeks old onwards. Histological analysis revealed that a significant reduction of ovarian follicles was observed in the Per1/Per2 mutants compared with the littermate controls examined at 26 and 52 weeks old, while the difference was not statistically significant between the two groups at 3 and 8 weeks old. We further showed that vascular development including the ovarian follicle associated vascular growth appeared normal in the Per1/Per2 mutant mice, although clock genes were reported to regulate angiogenesis in zebrafish. The findings imply that loss-of-function mutations with Per1/Per2 result in a premature depletion of ovarian follicle reserve leading to the decline of reproductive capacity.


Asunto(s)
Mutación con Pérdida de Función , Proteínas Circadianas Period/genética , Insuficiencia Ovárica Primaria/genética , Animales , Ritmo Circadiano/genética , Femenino , Infertilidad Femenina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reserva Ovárica/genética , Insuficiencia Ovárica Primaria/patología
10.
Am J Obstet Gynecol ; 220(1): 108.e1-108.e12, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30312583

RESUMEN

BACKGROUND: Maternal diabetes induces neural tube defects and stimulates the activity of the forkhead box O3 (Fox)O3a in the embryonic neuroepithelium. We previously demonstrated that deleting the FOXO3a gene ameliorates maternal diabetes-induced neural tube defects. Macroautophagy (hereafter referred to as "autophagy") is essential for neurulation. Rescuing autophagy suppressed by maternal diabetes in the developing neuroepithelium inhibits neural tube defect formation in diabetic pregnancy. This evidence suggests a possible link between FoxO3a and impaired autophagy in diabetic embryopathy. OBJECTIVE: We aimed to determine whether maternal diabetes suppresses autophagy through FoxO3a, and if the transcriptional activity of FoxO3a is required for the induction of diabetic embryopathy. STUDY DESIGN: We used a well-established type 1 diabetic embryopathy mouse model, in which diabetes was induced by streptozotocin, for our in vivo studies. To determine if FoxO3a mediates the inhibitory effect of maternal diabetes on autophagy in the developing neuroepithelium, we induced diabetic embryopathy in FOXO3a gene knockout mice and FoxO3a dominant negative transgenic mice. Embryos were harvested at embryonic day 8.5 to determine FoxO3a and autophagy activity and at embryonic day 10.5 for the presence of neural tube defects. We also examined the expression of autophagy-related genes. C17.2 neural stem cells were used for in vitro examination of the potential effects of FoxO3a on autophagy. RESULTS: Deletion of the FOXO3a gene restored the autophagy markers, lipidation of microtubule-associated protein 1A/1B-light chain 3I to light chain 3II, in neurulation stage embryos. Maternal diabetes decreased light chain 3I-positive puncta number in the neuroepithelium, which was restored by deleting FoxO3a. Maternal diabetes also decreased the expression of positive regulators of autophagy (Unc-51 like autophagy activating kinase 1, Coiled-coil myosin-like BCL2-interacting protein, and autophagy-related gene 5) and the negative regulator of autophagy, p62. FOXO3a gene deletion abrogated the dysregulation of autophagy genes. In vitro data showed that the constitutively active form of FoxO3a mimicked high glucose in repressing autophagy. In cells cultured under high-glucose conditions, overexpression of the dominant negative FoxO3a mutant blocked autophagy impairment. Dominant negative FoxO3a overexpression in the developing neuroepithelium restored autophagy and significantly reduced maternal diabetes-induced apoptosis and neural tube defects. CONCLUSION: Our study revealed that diabetes-induced FoxO3a activation inhibited autophagy in the embryonic neuroepithelium. We also observed that FoxO3a transcriptional activity mediated the teratogenic effect of maternal diabetes because dominant negative FoxO3a prevents maternal diabetes-induced autophagy impairment and neural tube defect formation. Our findings suggest that autophagy activators could be therapeutically effective in treating maternal diabetes-induced neural tube defects.


Asunto(s)
Autofagia/genética , Diabetes Gestacional/genética , Enfermedades Fetales/genética , Proteína Forkhead Box O3/genética , Regulación del Desarrollo de la Expresión Génica , Preñez , Análisis de Varianza , Animales , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Femenino , Ratones , Defectos del Tubo Neural/diagnóstico por imagen , Defectos del Tubo Neural/patología , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sensibilidad y Especificidad , Factores de Transcripción/genética
11.
Circ Res ; 120(5): 816-834, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-27908912

RESUMEN

RATIONALE: Cardiac progenitor cells are an attractive cell type for tissue regeneration, but their mechanism for myocardial remodeling is still unclear. OBJECTIVE: This investigation determines how chronological age influences the phenotypic characteristics and the secretome of human cardiac progenitor cells (CPCs), and their potential to recover injured myocardium. METHODS AND RESULTS: Adult (aCPCs) and neonatal (nCPCs) cells were derived from patients aged >40 years or <1 month, respectively, and their functional potential was determined in a rodent myocardial infarction model. A more robust in vitro proliferative capacity of nCPCs, compared with aCPCs, correlated with significantly greater myocardial recovery mediated by nCPCs in vivo. Strikingly, a single injection of nCPC-derived total conditioned media was significantly more effective than nCPCs, aCPC-derived TCM, or nCPC-derived exosomes in recovering cardiac function, stimulating neovascularization, and promoting myocardial remodeling. High-resolution accurate mass spectrometry with reverse phase liquid chromatography fractionation and mass spectrometry was used to identify proteins in the secretome of aCPCs and nCPCs, and the literature-based networking software identified specific pathways affected by the secretome of CPCs in the setting of myocardial infarction. Examining the TCM, we quantified changes in the expression pattern of 804 proteins in nCPC-derived TCM and 513 proteins in aCPC-derived TCM. The literature-based proteomic network analysis identified that 46 and 6 canonical signaling pathways were significantly targeted by nCPC-derived TCM and aCPC-derived TCM, respectively. One leading candidate pathway is heat-shock factor-1, potentially affecting 8 identified pathways for nCPC-derived TCM but none for aCPC-derived TCM. To validate this prediction, we demonstrated that the modulation of heat-shock factor-1 by knockdown in nCPCs or overexpression in aCPCs significantly altered the quality of their secretome. CONCLUSIONS: A deep proteomic analysis revealed both detailed and global mechanisms underlying the chronological age-based differences in the ability of CPCs to promote myocardial recovery via the components of their secretome.


Asunto(s)
Miocitos Cardíacos/fisiología , Proteoma/biosíntesis , Proteoma/genética , Proteómica/métodos , Células Madre/fisiología , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Humanos , Recién Nacido , Masculino , Ratas
12.
Am J Obstet Gynecol ; 218(1): 136.e1-136.e10, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29100869

RESUMEN

BACKGROUND: Maternal diabetes induces neural tube defects, and oxidative stress is a causal factor for maternal diabetes-induced neural tube defects. The redox gene nuclear factor erythroid 2-related factor 2 is the master regulator of the cellular antioxidant system. OBJECTIVE: In this study, we aimed to determine whether maternal diabetes inhibits nuclear factor erythroid 2-related factor 2 expression and nuclear factor erythroid 2-related factor 2-controlled antioxidant genes through the redox-sensitive miR-27a. STUDY DESIGN: We used a well-established type 1 diabetic embryopathy mouse model induced by streptozotocin for our in vivo studies. Embryos at embryonic day 8.5 were harvested for analysis of nuclear factor erythroid 2-related factor 2, nuclear factor erythroid 2-related factor 2-controlled antioxidant genes, and miR-27a expression. To determine if mitigating oxidative stress inhibits the increase of miR-27a and the decrease of nuclear factor erythroid 2-related factor 2 expression, we induced diabetic embryopathy in superoxide dismutase 2 (mitochondrial-associated antioxidant gene)-overexpressing mice. This model exhibits reduced mitochondria reactive oxygen species even in the presence of hyperglycemia. To investigate the causal relationship between miR-27a and nuclear factor erythroid 2-related factor 2 in vitro, we examined C17.2 neural stem cells under normal and high-glucose conditions. RESULTS: We observed that the messenger RNA and protein levels of nuclear factor erythroid 2-related factor 2 were significantly decreased in embryos on embryonic day 8.5 from diabetic dams compared to those from nondiabetic dams. High-glucose also significantly decreased nuclear factor erythroid 2-related factor 2 expression in a dose- and time-dependent manner in cultured neural stem cells. Our data revealed that miR-27a was up-regulated in embryos on embryonic day 8.5 exposed to diabetes, and that high glucose increased miR-27a levels in a dose- and time-dependent manner in cultured neural stem cells. In addition, we found that a miR-27a inhibitor abrogated the inhibitory effect of high glucose on nuclear factor erythroid 2-related factor 2 expression, and a miR-27a mimic suppressed nuclear factor erythroid 2-related factor 2 expression in cultured neural stem cells. Furthermore, our data indicated that the nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1 were down-regulated by maternal diabetes in embryos on embryonic day 8.5 and high glucose in cultured neural stem cells. Inhibiting miR-27a restored expression of glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1. Overexpressing superoxide dismutase 2 reversed the maternal diabetes-induced increase of miR-27a and suppression of nuclear factor erythroid 2-related factor 2 and nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes. CONCLUSION: Our study demonstrates that maternal diabetes-induced oxidative stress increases miR-27a, which, in turn, suppresses nuclear factor erythroid 2-related factor 2 and its responsive antioxidant enzymes, resulting in diabetic embryopathy.


Asunto(s)
MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Embarazo en Diabéticas/metabolismo , Animales , Células Cultivadas , Femenino , MicroARNs/genética , Mitocondrias/genética , Modelos Animales , Factor 2 Relacionado con NF-E2/genética , Células-Madre Neurales/metabolismo , Defectos del Tubo Neural/metabolismo , Embarazo , Superóxido Dismutasa/genética , Regulación hacia Arriba
13.
Pediatr Res ; 83(1-2): 275-282, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29016556

RESUMEN

Pregestational maternal diabetes induces congenital heart defects (CHDs). Cardiac dysfunction after palliative surgical procedures contributes to the high mortality of CHD patients. Autologous or allogeneic stem cell therapies are effective for improving cardiac function in animal models and clinical trials. c-kit+ cardiac progenitor cells (CPCs), the most recognized CPCs, have the following basic properties of stem cells: self-renewal, multicellular clone formation, and differentiation into multiple cardiac lineages. However, there is ongoing debate regarding whether c-kit+ CPCs can give rise to sufficient cardiomyocytes. A new hypothesis to address the beneficial effect of c-kit+ CPCs is that these cells stimulate endogenous cardiac cells through a paracrine function in producing a robust secretome and exosomes. The values of other cardiac CPCs, including Sca1+ CPCs and cardiosphere-derived cells, are beginning to be revealed. These cells may be better choices than c-kit+ CPCs for generating cardiomyocytes. Adult mesenchymal stem cells are considered immune-incompetent and effective for improving cardiac function. Autologous CPC therapy may be limited by the observation that maternal diabetes adversely affects the biological function of embryonic stem cells and CPCs. Future studies should focus on determining the mechanistic action of these cells, identifying new CPC markers, selecting highly effective CPCs, and engineering cell-free products.


Asunto(s)
Diabetes Gestacional/terapia , Células Madre Embrionarias/citología , Cardiopatías Congénitas/terapia , Miocitos Cardíacos/citología , Trasplante de Células Madre , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Femenino , Trasplante de Corazón , Humanos , Sistema Inmunológico , Ratones , Células Madre Multipotentes/citología , Embarazo , Preñez , Proteínas Proto-Oncogénicas c-kit/metabolismo
14.
Am J Obstet Gynecol ; 217(2): 216.e1-216.e13, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28412087

RESUMEN

BACKGROUND: Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. OBJECTIVE: This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. STUDY DESIGN: The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of ß-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. RESULTS: The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased ß-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus activated the proapoptotic c-Jun-N-terminal kinase 1/2 stress signaling and triggered cell apoptosis by increasing the number of terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling-positive cells (10.4 ± 2.2% of the type 2 diabetes mellitus group vs 3.8 ± 0.7% of the nondiabetic group, P < .05). CONCLUSION: Maternal type 2 diabetes mellitus induces cardiac hypertrophy in embryonic hearts. Adverse cardiac remodeling, including elevated collagen synthesis, suppressed fibronectin synthesis, profibrosis, and apoptosis, is implicated as the etiology of cardiac hypertrophy.


Asunto(s)
Cardiomegalia/embriología , Cardiomegalia/etiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Gestacional , Miocardio/patología , Animales , Femenino , Fibrosis/embriología , Fibrosis/etiología , Ratones , Ratones Endogámicos C57BL , Embarazo
15.
J Neurochem ; 137(3): 371-83, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26896748

RESUMEN

Aberrant epigenetic modifications are implicated in maternal diabetes-induced neural tube defects (NTDs). Because cellular stress plays a causal role in diabetic embryopathy, we investigated the possible role of the stress-resistant sirtuin (SIRT) family histone deacetylases. Among the seven sirtuins (SIRT1-7), pre-gestational maternal diabetes in vivo or high glucose in vitro significantly reduced the expression of SIRT 2 and SIRT6 in the embryo or neural stem cells, respectively. The down-regulation of SIRT2 and SIRT6 was reversed by superoxide dismutase 1 (SOD1) over-expression in the in vivo mouse model of diabetic embryopathy and the SOD mimetic, tempol and cell permeable SOD, PEGSOD in neural stem cell cultures. 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a superoxide generating agent, mimicked high glucose-suppressed SIRT2 and SIRT6 expression. The acetylation of histone 3 at lysine residues 56 (H3K56), H3K14, H3K9, and H3K27, putative substrates of SIRT2 and SIRT6, was increased by maternal diabetes in vivo or high glucose in vitro, and these increases were blocked by SOD1 over-expression or tempol treatment. SIRT2 or SIRT6 over-expression abrogated high glucose-suppressed SIRT2 or SIRT6 expression, and prevented the increase in acetylation of their histone substrates. The potent sirtuin activator (SRT1720) blocked high glucose-increased histone acetylation and NTD formation, whereas the combination of a pharmacological SIRT2 inhibitor and a pan SIRT inhibitor mimicked the effect of high glucose on increased histone acetylation and NTD induction. Thus, diabetes in vivo or high glucose in vitro suppresses SIRT2 and SIRT6 expression through oxidative stress, and sirtuin down-regulation-induced histone acetylation may be involved in diabetes-induced NTDs. The mechanism underlying pre-gestational diabetes-induced neural tube defects (NTDs) is still elusive. Our study unravels a new epigenetic mechanism in which maternal diabetes-induced oxidative stress represses sirtuin deacetylase 2 (SIRT2) and 6 (SIRT6) expression leading to histone acetylation and gene expression. SIRT down-regulation mediates the teratogenicity of diabetes leading to (NTD) formation. The study provides a mechanistic basis for the development of natural antioxidants and SIRT activators as therapeutics for diabetic embryopathy.


Asunto(s)
Glucosa/toxicidad , Histona Desacetilasas del Grupo III/biosíntesis , Histona Desacetilasas del Grupo III/genética , Histonas/metabolismo , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/genética , Estrés Oxidativo/efectos de los fármacos , Acetilación , Animales , Diabetes Gestacional/patología , Epigénesis Genética , Femenino , Histona Desacetilasas del Grupo III/antagonistas & inhibidores , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Ratones , Naftoquinonas/farmacología , Células-Madre Neurales/metabolismo , Defectos del Tubo Neural/prevención & control , Embarazo , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/biosíntesis , Sirtuina 2/genética , Sirtuinas/antagonistas & inhibidores , Sirtuinas/biosíntesis , Sirtuinas/genética , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
16.
Biochem Biophys Res Commun ; 472(2): 306-12, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26940741

RESUMEN

Abnormal neurogenesis occurs during embryonic development in human diabetic pregnancies and in animal models of diabetic embryopathy. Our previous studies in a mouse model of diabetic embryopathy have implicated that high glucose of maternal diabetes delays neurogenesis in the developing neuroepithelium leading to neural tube defects. However, the underlying process in high glucose-impaired neurogenesis is uncharacterized. Neurogenesis from embryonic stem (ES) cells provides a valuable model for understanding the abnormal neural lineage development under high glucose conditions. ES cells are commonly generated and maintained in high glucose (approximately 25 mM glucose). Here, the mouse ES cell line, E14, was gradually adapted to and maintained in low glucose (5 mM), and became a glucose responsive E14 (GR-E14) line. High glucose induced the endoplasmic reticulum stress marker, CHOP, in GR-E14 cells. Under low glucose conditions, the GR-E14 cells retained their pluripotency and capability to differentiate into neural lineage cells. GR-E14 cell differentiation into neural stem cells (Sox1 and nestin positive cells) was inhibited by high glucose. Neuron (Tuj1 positive cells) and glia (GFAP positive cells) differentiation from GR-E14 cells was also suppressed by high glucose. In addition, high glucose delayed GR-E14 differentiation into neural crest cells by decreasing neural crest markers, paired box 3 (Pax3) and paired box 7 (Pax7). Thus, high glucose impairs ES cell differentiation into neural lineage cells. The low glucose adapted and high glucose responsive GR-E14 cell line is a useful in vitro model for assessing the adverse effect of high glucose on the development of the central nervous system.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Glucosa/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular , Relación Dosis-Respuesta a Droga , Células Madre Embrionarias/efectos de los fármacos , Glucosa/administración & dosificación , Ratones , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo
17.
Am J Obstet Gynecol ; 215(3): 368.e1-368.e10, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26979632

RESUMEN

BACKGROUND: Maternal diabetes increases the risk of neural tube defects in offspring. Our previous study demonstrated that the green tea polyphenol, Epigallocatechin gallate, inhibits high glucose-induced neural tube defects in cultured embryos. However, the therapeutic effect of Epigallocatechin gallate on maternal diabetes-induced neural tube defects is still unclear. OBJECTIVE: We aimed to examine whether Epigallocatechin gallate treatment can reduce maternal diabetes-induced DNA methylation and neural tube defects. STUDY DESIGN: Nondiabetic and diabetic pregnant mice at embryonic day 5.5 were given drinking water with or without 1 or 10 µM Epigallocatechin gallate. At embryonic day 8.75, embryos were dissected from the visceral yolk sac for the measurement of the levels and activity of DNA methyltransferases, the levels of global DNA methylation, and methylation in the CpG islands of neural tube closure essential gene promoters. embryonic day 10.5 embryos were examined for neural tube defect incidence. RESULTS: Epigallocatechin gallate treatment did not affect embryonic development because embryos from nondiabetic dams treated with Epigallocatechin gallate did not exhibit any neural tube defects. Treatment with 1 µM Epigallocatechin gallate did not reduce maternal diabetes-induced neural tube defects significantly. Embryos from diabetic dams treated with 10 µM Epigallocatechin gallate had a significantly lower neural tube defect incidence compared with that of embryos without Epigallocatechin gallate treatment. Epigallocatechin gallate reduced neural tube defect rates from 29.5% to 2%, an incidence that is comparable with that of embryos from nondiabetic dams. Ten micromoles of Epigallocatechin gallate treatment blocked maternal diabetes-increased DNA methyltransferases 3a and 3b expression and their activities, leading to the suppression of global DNA hypermethylation. Additionally, 10 µM Epigallocatechin gallate abrogated maternal diabetes-increased DNA methylation in the CpG islands of neural tube closure essential genes, including Grhl3, Pax3, and Tulp3. CONCLUSION: Epigallocatechin gallate reduces maternal diabetes-induced neural tube defects formation and blocks the enhanced expression and activity of DNA methyltransferases, leading to the suppression of DNA hypermethylation and the restoration of neural tube closure essential gene expression. These observations suggest that Epigallocatechin gallate supplements could mitigate the teratogenic effects of hyperglycemia on the developing embryo and prevent diabetes-induced neural tube defects.


Asunto(s)
Catequina/análogos & derivados , Metilación de ADN/efectos de los fármacos , Diabetes Gestacional , Defectos del Tubo Neural/prevención & control , Animales , Catequina/farmacología , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Diabetes Mellitus Experimental , Embrión de Mamíferos/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular , Ratones Endogámicos C57BL , Defectos del Tubo Neural/genética , Factor de Transcripción PAX3/genética , Embarazo , Proteínas/genética , Factores de Transcripción/genética , ADN Metiltransferasa 3B
18.
Am J Obstet Gynecol ; 214(2): 192-202, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26432466

RESUMEN

Maternal diabetes mellitus is a significant risk factor for structural birth defects, including congenital heart defects and neural tube defects. With the rising prevalence of type 2 diabetes mellitus and obesity in women of childbearing age, diabetes mellitus-induced birth defects have become an increasingly significant public health problem. Maternal diabetes mellitus in vivo and high glucose in vitro induce yolk sac injuries by damaging the morphologic condition of cells and altering the dynamics of organelles. The yolk sac vascular system is the first system to develop during embryogenesis; therefore, it is the most sensitive to hyperglycemia. The consequences of yolk sac injuries include impairment of nutrient transportation because of vasculopathy. Although the functional relationship between yolk sac vasculopathy and structural birth defects has not yet been established, a recent study reveals that the quality of yolk sac vasculature is related inversely to embryonic malformation rates. Studies in animal models have uncovered key molecular intermediates of diabetic yolk sac vasculopathy, which include hypoxia-inducible factor-1α, apoptosis signal-regulating kinase 1, and its inhibitor thioredoxin-1, c-Jun-N-terminal kinases, nitric oxide, and nitric oxide synthase. Yolk sac vasculopathy is also associated with abnormalities in arachidonic acid and myo-inositol. Dietary supplementation with fatty acids that restore lipid levels in the yolk sac lead to a reduction in diabetes mellitus-induced malformations. Although the role of the human yolk in embryogenesis is less extensive than in rodents, nevertheless, human embryonic vasculogenesis is affected negatively by maternal diabetes mellitus. Mechanistic studies have identified potential therapeutic targets for future intervention against yolk sac vasculopathy, birth defects, and other complications associated with diabetic pregnancies.


Asunto(s)
Anomalías Congénitas/embriología , Glucosa/metabolismo , Embarazo en Diabéticas/metabolismo , Enfermedades Vasculares/embriología , Saco Vitelino/embriología , Animales , Ácido Araquidónico/metabolismo , Anomalías Congénitas/metabolismo , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inositol/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Embarazo , Tiorredoxinas/metabolismo , Enfermedades Vasculares/metabolismo , Saco Vitelino/irrigación sanguínea , Saco Vitelino/metabolismo
19.
Am J Obstet Gynecol ; 215(3): 366.e1-366.e10, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27038779

RESUMEN

BACKGROUND: Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. OBJECTIVE: We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. STUDY DESIGN: A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. RESULTS: Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene expression; and XBP1 messenger RNA splicing, as well as increased cleaved caspase 3 and 8 in embryonic hearts. Furthermore, maternal type 2 diabetes mellitus triggered excessive apoptosis in ventricular myocardium, endocardial cushion, and outflow tract of the embryonic heart. CONCLUSION: Similar to those observations in type 1 diabetic embryopathy, maternal type 2 diabetes mellitus causes heart defects in the developing embryo manifested with oxidative stress, endoplasmic reticulum stress, and excessive apoptosis in heart cells.


Asunto(s)
Apoptosis , Diabetes Gestacional , Estrés del Retículo Endoplásmico , Cardiopatías Congénitas/embriología , Estrés Oxidativo , Animales , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Diabetes Mellitus Experimental , Embrión de Mamíferos , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Femenino , Cardiopatías Congénitas/patología , Proteínas de Choque Térmico/metabolismo , Peroxidación de Lípido , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Fosforilación , Embarazo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Empalme del ARN , Factor de Transcripción CHOP/metabolismo , Proteína 1 de Unión a la X-Box/genética
20.
Am J Physiol Endocrinol Metab ; 309(5): E487-99, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26173459

RESUMEN

Maternal diabetes in mice induces heart defects similar to those observed in human diabetic pregnancies. Diabetes enhances apoptosis and suppresses cell proliferation in the developing heart, yet the underlying mechanism remains elusive. Apoptosis signal-regulating kinase 1 (ASK1) activates the proapoptotic c-Jun NH2-terminal kinase 1/2 (JNK1/2) leading to apoptosis, suggesting a possible role of ASK1 in diabetes-induced heart defects. We aimed to investigate whether ASK1 is activated in the heart and whether deleting the Ask1 gene blocks diabetes-induced adverse events and heart defect formation. The ASK1-JNK1/2 pathway was activated by diabetes. Deleting Ask1 gene significantly reduced the rate of heart defects, including ventricular septal defects (VSDs) and persistent truncus arteriosus (PTA). Additionally, Ask1 deletion diminished diabetes-induced JNK1/2 phosphorylation and its downstream transcription factors and endoplasmic reticulum (ER) stress markers. Consistent with this, caspase activation and apoptosis were blunted. Ask1 deletion blocked the increase in cell cycle inhibitors (p21 and p27) and the decrease in cyclin D1 and D3 and reversed diabetes-repressed cell proliferation. Ask1 deletion also restored the expression of BMP4, NKX2.5, and GATA5, Smad1/5/8 phosphorylation, whose mutations or deletion result in reduced cell proliferation, VSD, and PTA formation. We conclude that ASK1 may mediate the teratogenicity of diabetes through activating the JNK1/2-ER stress pathway and inhibiting cell cycle progression, thereby impeding the cardiogenesis pathways essential for ventricular septation and outflow tract development.


Asunto(s)
Apoptosis/genética , Estrés del Retículo Endoplásmico/genética , Defectos del Tabique Interventricular/genética , Corazón/embriología , MAP Quinasa Quinasa Quinasa 5/genética , Embarazo en Diabéticas/genética , Teratogénesis/genética , Tronco Arterial Persistente/genética , Animales , Proteína Morfogenética Ósea 4/metabolismo , Proliferación Celular , Ciclina D1/metabolismo , Ciclina D3/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Factor de Transcripción GATA5/metabolismo , Cardiopatías Congénitas/etiología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Defectos del Tabique Interventricular/etiología , Defectos del Tabique Interventricular/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Fosforilación , Embarazo , Embarazo en Diabéticas/metabolismo , Transducción de Señal , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Factores de Transcripción/metabolismo , Tronco Arterial Persistente/etiología , Tronco Arterial Persistente/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA