Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Med Imaging ; 24(1): 179, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030510

RESUMEN

Renal tumors are one of the common diseases of urology, and precise segmentation of these tumors plays a crucial role in aiding physicians to improve diagnostic accuracy and treatment effectiveness. Nevertheless, inherent challenges associated with renal tumors, such as indistinct boundaries, morphological variations, and uncertainties in size and location, segmenting renal tumors accurately remains a significant challenge in the field of medical image segmentation. With the development of deep learning, substantial achievements have been made in the domain of medical image segmentation. However, existing models lack specificity in extracting features of renal tumors across different network hierarchies, which results in insufficient extraction of renal tumor features and subsequently affects the accuracy of renal tumor segmentation. To address this issue, we propose the Selective Kernel, Vision Transformer, and Coordinate Attention Enhanced U-Net (STC-UNet). This model aims to enhance feature extraction, adapting to the distinctive characteristics of renal tumors across various network levels. Specifically, the Selective Kernel modules are introduced in the shallow layers of the U-Net, where detailed features are more abundant. By selectively employing convolutional kernels of different scales, the model enhances its capability to extract detailed features of renal tumors across multiple scales. Subsequently, in the deeper layers of the network, where feature maps are smaller yet contain rich semantic information, the Vision Transformer modules are integrated in a non-patch manner. These assist the model in capturing long-range contextual information globally. Their non-patch implementation facilitates the capture of fine-grained features, thereby achieving collaborative enhancement of global-local information and ultimately strengthening the model's extraction of semantic features of renal tumors. Finally, in the decoder segment, the Coordinate Attention modules embedding positional information are proposed aiming to enhance the model's feature recovery and tumor region localization capabilities. Our model is validated on the KiTS19 dataset, and experimental results indicate that compared to the baseline model, STC-UNet shows improvements of 1.60%, 2.02%, 2.27%, 1.18%, 1.52%, and 1.35% in IoU, Dice, Accuracy, Precision, Recall, and F1-score, respectively. Furthermore, the experimental results demonstrate that the proposed STC-UNet method surpasses other advanced algorithms in both visual effectiveness and objective evaluation metrics.


Asunto(s)
Aprendizaje Profundo , Neoplasias Renales , Humanos , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Algoritmos , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Interpretación de Imagen Asistida por Computador/métodos
2.
Entropy (Basel) ; 26(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38785670

RESUMEN

In this paper, we consider a downlink non-orthogonal multiple access (NOMA) system over Nakagami-m channels. The single-antenna base station serves two single-antenna NOMA users based on statistical channel state information (CSI). We derive the closed-form expression of the exact outage probability under a given decoding order, and we also deduce the asymptotic outage probability and diversity order in a high-SNR regime. Then, we analyze all the possible power allocation ranges and theoretically prove the optimal power allocation range under the corresponding decoding order. The demarcation points of the optimal power allocation ranges are affected by target data rates and total power, without an effect from the CSI. In particular, the values of the demarcation points are proportional to the total power. Furthermore, we formulate a joint decoding order and power allocation optimization problem to maximize the sum throughput, which is solved by efficiently searching in our obtained optimal power allocation ranges. Finally, Monte Carlo simulations are conducted to confirm the accuracy of our derived exact outage probability. Numerical results show the accuracy of our deduced demarcation points of the optimal power allocation ranges. And the optimal decoding order is not constant at different total transmit power levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA