RESUMEN
Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (e.g., social network analysis and recommender systems), computer vision (e.g., object detection and point cloud learning), and natural language processing (e.g., relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, i.e., 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.
RESUMEN
Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations. Codes and models are available at https://github.com/RL4M/PCRLv2.
Asunto(s)
Algoritmos , Neoplasias Encefálicas , Humanos , Imagenología Tridimensional , Semántica , Procesamiento de Imagen Asistido por ComputadorRESUMEN
Grounding referring expressions in images aims to locate the object instance in an image described by a referring expression. It involves a joint understanding of natural language and image content, and is essential for a range of visual tasks related to human-computer interaction. As a language-to-vision matching task, the core of this problem is to not only extract all the necessary information (i.e., objects and the relationships among them) in both the image and referring expression, but also make full use of context information to align cross-modal semantic concepts in the extracted information. Unfortunately, existing work on grounding referring expressions fails to accurately extract multi-order relationships from the referring expression and associate them with the objects and their related contexts in the image. In this paper, we propose a cross-modal relationship extractor (CMRE) to adaptively highlight objects and relationships (spatial and semantic relations) related to the given expression with a cross-modal attention mechanism, and represent the extracted information as a language-guided visual relation graph. In addition, we propose a Gated Graph Convolutional Network (GGCN) to compute multimodal semantic contexts by fusing information from different modes and propagating multimodal information in the structured relation graph. Experimental results on three common benchmark datasets show that our Cross-Modal Relationship Inference Network, which consists of CMRE and GGCN, significantly surpasses all existing state-of-the-art methods.