Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(6): e108544, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34850409

RESUMEN

Since numerous RNAs and RBPs prevalently localize to active chromatin regions, many RNA-binding proteins (RBPs) may be potential transcriptional regulators. RBPs are generally thought to regulate transcription via noncoding RNAs. Here, we describe a distinct, dual mechanism of transcriptional regulation by the previously uncharacterized tRNA-modifying enzyme, hTrmt13. On one hand, hTrmt13 acts in the cytoplasm to catalyze 2'-O-methylation of tRNAs, thus regulating translation in a manner depending on its tRNA-modification activity. On the other hand, nucleus-localized hTrmt13 directly binds DNA as a transcriptional co-activator of key epithelial-mesenchymal transition factors, thereby promoting cell migration independent of tRNA-modification activity. These dual functions of hTrmt13 are mutually exclusive, as it can bind either DNA or tRNA through its CHHC zinc finger domain. Finally, we find that hTrmt13 expression is tightly associated with poor prognosis and survival in diverse cancer patients. Our discovery of the noncatalytic roles of an RNA-modifying enzyme provides a new perspective for understanding epitranscriptomic regulation.


Asunto(s)
ARN de Transferencia , ARNt Metiltransferasas , Humanos , Metilación , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
2.
Nucleic Acids Res ; 52(6): 3291-3309, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38165050

RESUMEN

The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (∼200 000 versus ∼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.


Asunto(s)
Precursores del ARN , Empalme del ARN , Proteínas de Unión al ARN , Degeneración Retiniana , Animales , Humanos , Metilación , Conformación de Ácido Nucleico , Degeneración Retiniana/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , ARN Nuclear Pequeño/metabolismo , Saccharomyces cerevisiae/genética , Empalmosomas/genética , Empalmosomas/metabolismo
3.
Apoptosis ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704789

RESUMEN

Ferroptosis is a new programmed cell death characterized by iron-dependent lipid peroxidation. Targeting ferroptosis is considered a promising strategy for anti-cancer therapy. Recently, natural compound has gained increased attention for their advantage in cancer treatment, and the exploration of natural compounds as ferroptosis inducers offers a hopeful avenue for advancing cancer treatment modalities. Emodin is a natural anthraquinone derivative in many widely used Chinese medicinal herbs. In our previous study, we predicted that the anti-cancer effect of Emodin might related to ferroptosis by using RNA-seq in colorectal cancer (CRC). Thus, in this study, we aim to investigate the molecular mechanism underlying Emodin-mediated ferroptosis in CRC. Cell-based assays including CCK-8, colony formation, EdU, and Annexin V/PI staining were employed to assess Emodin's impact on cell proliferation and apoptosis. Furthermore, various techniques such as FerroOrange staining, C11-BODIPY 581/591 staining, iron, MDA, GSH detection assay and transmission electron microscopy were performed to examine the role of Emodin in ferroptosis. Additionally, specific NCOA4 knockdown cell lines were generated to elucidate the involvement of NCOA4 in Emodin-induced ferroptosis. Moreover, the effects of Emodin on ferroptosis were further confirmed through the application of inhibitors, including Ferrostatin-1, 3-MA, DFO, and PMA. As a results, Emodin inhibited proliferation and induced apoptosis in CRC cells. Emodin could decrease GSH content, xCT and GPX4 expression, meanwhile increasing ROS generation, MDA, and lipid peroxidation, and these effects could reverse by ferroptosis inhibitor, Ferostatin-1, iron chelator DFO, autophagy inhibitor 3-MA and NCOA4 silencing. Moreover, Emodin could inactivate NF-κb pathway, and PMA, an activator of NF-κb pathway could alleviate Emodin-induced ferroptosis in CRC cells. Xenograft mouse model also showed that Emodin suppressed tumor growth and induced ferroptosis in vivo. In conclusion, these results suggested that Emodin induced ferroptosis through NCOA4-mediated ferritinophagy by inactivating NF-κb pathway in CRC cells. These findings not only identified a novel role for Emodin in ferroptosis but also indicated that Emodin may be a valuable candidate for the development of an anti-cancer agent.

4.
Phytother Res ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886264

RESUMEN

Atherosclerosis represents the major cause of mortality worldwide and triggers higher risk of acute cardiovascular events. Pericytes-endothelial cells (ECs) communication is orchestrated by ligand-receptor interaction generating a microenvironment which results in intraplaque neovascularization, that is closely associated with atherosclerotic plaque instability. Notoginsenoside R1 (R1) exhibits anti-atherosclerotic bioactivity, but its effect on angiogenesis in atherosclerotic plaque remains elusive. The aim of our study is to explore the therapeutic effect of R1 on vulnerable plaque and investigate its potential mechanism against intraplaque neovascularization. The impacts of R1 on plaque stability and intraplaque neovascularization were assessed in ApoE-/- mice induced by high-fat diet. Pericytes-ECs direct or non-direct contact co-cultured with VEGF-A stimulation were used as the in vitro angiogenesis models. Overexpressing Ang1 in pericytes was performed to investigate the underlying mechanism. In vivo experiments, R1 treatment reversed atherosclerotic plaque vulnerability and decreased the presence of neovessels in ApoE-/- mice. Additionally, R1 reduced the expression of Ang1 in pericytes. In vitro experiments demonstrated that R1 suppressed pro-angiogenic behavior of ECs induced by pericytes cultured with VEGF-A. Mechanistic studies revealed that the anti-angiogenic effect of R1 was dependent on the inhibition of Ang1 and Tie2 expression, as the effects were partially reversed after Ang1 overexpressing in pericytes. Our study demonstrated that R1 treatment inhibited intraplaque neovascularization by governing pericyte-EC association via suppressing Ang1-Tie2/PI3K-AKT paracrine signaling pathway. R1 represents a novel therapeutic strategy for atherosclerotic vulnerable plaques in clinical application.

5.
Lasers Med Sci ; 39(1): 172, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965092

RESUMEN

The study utilized 5-ALA-PDT to treat patients with CIN or VaIN and assessed their clinical response, HPV clearance, and influencing factors after photodynamic therapy (PDT). This study involved 56 patients who received 5-ALA-PDT in a single center from May 2020 to March 2022, including 12 patients with CIN, 30 patients with VaIN, and 14 patients with both CIN and VaIN. Follow-up were conducted within 6 and 12 months after treatment to evaluate the clinical effectiveness of PDT. The assessment criteria included histological response (ER, elimination rate, RR, regression rate) and HPV clearance. Additionally, factors that could potentially influence the outcomes were analyzed. After PDT, the histological response showed an ER of 48.2% (27/56) and a RR of 80.4% (45/56) within 6 months of follow-up. The elimination rate increased to 69.6% (39/56) within 12 months, along with a regression rate of 82.1% (46/56). The rates of HPV clearance were observed to be 37.5% (21/56) and 44.6% (25/56) within 6 and 12 months, respectively. The study also revealed that HPV clearance significantly influenced histologic elimination within 6 months (p < 0.001) and histologic regression within 12 months (p < 0.01). Furthermore, premenopausal women exhibited a higher HPV clearance rate compared to postmenopausal women (61.5% vs. 30.0%, p = 0.036). 5-ALA PDT can be considered as an available option for the treatment of lower genital squamous intraepithelial lesions. The efficacy of its histologic response depends on HPV clearance. Additionally, it has been found that premenopausal women may benefit more from this treatment.


Asunto(s)
Ácido Aminolevulínico , Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Femenino , Fotoquimioterapia/métodos , Ácido Aminolevulínico/uso terapéutico , Ácido Aminolevulínico/administración & dosificación , Adulto , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/administración & dosificación , Persona de Mediana Edad , Resultado del Tratamiento , Displasia del Cuello del Útero/tratamiento farmacológico , Displasia del Cuello del Útero/virología , Displasia del Cuello del Útero/patología , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/virología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/patología , Adulto Joven , Anciano
6.
Nano Lett ; 23(23): 11288-11296, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-37983011

RESUMEN

Core-shell crystalline-amorphous nanocomposites, featuring nanograins surrounded by thick amorphous boundaries, are promising nanoarchitectures for achieving exceptional strength through cooperative strengthening effects. However, a comprehensive understanding of the influence of characteristic sizes, particularly the amorphous thickness, on codeformation strengthening is still lacking, limiting the attainment of the strength limit. Here, we employ molecular dynamics simulations to investigate Cu-CuTa crystalline-amorphous nanocomposites with varying grain sizes and amorphous thicknesses. Our findings demonstrate significant strengthening effects in nanocomposites, effectively suppressing the Hall-Petch breakdown observed in traditional amorphous-free nanograined Cu. Intriguingly, we observe a maximum strength followed by a strengthening-softening transition dependent on the amorphous thickness, as exemplified by a representative nanocomposite featuring a 12.5 nm grain size and a critical amorphous thickness of 4 nm. Inspired by observed shifts in atomistic mechanisms, we developed a theoretical model encompassing variations in grain size and amorphous thickness, providing valuable insights into the size-strength relationship for crystalline-amorphous nanocomposites.

7.
Mol Cancer ; 22(1): 53, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932368

RESUMEN

Endometrial cancer (EC) is one of the most common gynecologic cancers and its incidence is rising globally. Although advanced EC has a poor prognosis; diagnosing EC at an earlier stage could improve long-term patient outcomes. However, there is no consensus on the early detection strategies for EC and the current diagnostic practices such as transvaginal ultrasound, hysteroscopy and endometrial biopsy are invasive, costly and low in specificity. Thus, accurate and less invasive screening tests that detect EC in women with early stages of the disease are needed. Current research has revolutionized novel EC early detection methodologies in many aspects. This review aims to comprehensively characterizes minimally invasive screening techniques that can be applied to EC in the future, and fully demonstrate their potential in the early detection of EC.


Asunto(s)
Neoplasias Endometriales , Embarazo , Femenino , Humanos , Neoplasias Endometriales/diagnóstico , Endometrio/diagnóstico por imagen , Endometrio/patología , Biopsia , Ultrasonografía/métodos , Histeroscopía , Detección Precoz del Cáncer/métodos
8.
Appl Environ Microbiol ; 89(11): e0081923, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37902393

RESUMEN

IMPORTANCE: Aeromonas veronii can adhere to host cells through different adherence factors including outer-membrane proteins (OMPs), lipopolysaccharide (LPS), and pili, but its adherence mechanisms are still unclear. Here, we evaluated the effect of autoinducer-2 (AI-2) on adherence of A. veronii and its regulation mechanism. After determination of the promotion effect of AI-2 on adherence, we investigated which adherence factor was regulated by AI-2, and the results show that AI-2 only limits the formation of pili. Among the four distinct pili systems, only the mannose-sensitive hemagglutinin (MSHA) type IV pili genes were significantly downregulated after deficiency of AI-2. MshE, an ATPase belonged to MSHA type IV pilin, was confirmed as c-di-GMP receptor, that can bind with c-di-GMP which is positively regulated by AI-2, and the increase of c-di-GMP can promote the expression of MSHA type IV pili genes and adherence of A. veronii. Therefore, this study confirms that c-di-GMP positively regulated by AI-2 binds with MshE, then increases the expression of MSHA pili genes, finally promoting adherence of A. veronii, suggesting a multilevel positive regulatory adhesion mechanism that is responsible for A. veronii adherence.


Asunto(s)
Aeromonas veronii , Hemaglutininas , Manosa , Fimbrias Bacterianas/genética
9.
Nucleic Acids Res ; 49(20): 11900-11919, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34669960

RESUMEN

Post-transcriptional modifications affect tRNA biology and are closely associated with human diseases. However, progress on the functional analysis of tRNA modifications in metazoans has been slow because of the difficulty in identifying modifying enzymes. For example, the biogenesis and function of the prevalent N2-methylguanosine (m2G) at the sixth position of tRNAs in eukaryotes has long remained enigmatic. Herein, using a reverse genetics approach coupled with RNA-mass spectrometry, we identified that THUMP domain-containing protein 3 (THUMPD3) is responsible for tRNA: m2G6 formation in human cells. However, THUMPD3 alone could not modify tRNAs. Instead, multifunctional methyltransferase subunit TRM112-like protein (TRMT112) interacts with THUMPD3 to activate its methyltransferase activity. In the in vitro enzymatic assay system, THUMPD3-TRMT112 could methylate all the 26 tested G6-containing human cytoplasmic tRNAs by recognizing the characteristic 3'-CCA of mature tRNAs. We also showed that m2G7 of tRNATrp was introduced by THUMPD3-TRMT112. Furthermore, THUMPD3 is widely expressed in mouse tissues, with an extremely high level in the testis. THUMPD3-knockout cells exhibited impaired global protein synthesis and reduced growth. Our data highlight the significance of the tRNA: m2G6/7 modification and pave a way for further studies of the role of m2G in sperm tRNA derived fragments.


Asunto(s)
Metiltransferasas/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/metabolismo , ARNt Metiltransferasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Metilación , Metiltransferasas/genética , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Especificidad por Sustrato , ARNt Metiltransferasas/genética
10.
Opt Express ; 30(4): 5855-5867, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209539

RESUMEN

Non-line-of-sight (NLOS) imaging provides a fascinating way to see through obstacles. As one of the dominating NLOS imaging approaches, transient NLOS imaging uses ultrafast illumination and detection to sense hidden objects. Because ultrafast array detectors still face challenges in manufacture or cost, most existing transient NLOS imaging schemes use a point detector and therefore need a point-by-point scanning (PPS) process, rendering a relative low detection efficiency and long imaging time. In this work, we apply a passive mode single-pixel camera to implement spatial multiplexing detection (SMD) in NLOS imaging and achieve a higher efficiency of data acquisition. We analyze and demonstrate the superiority of SMD through both simulation and experiment. We also demonstrate a SMD scheme with compressed sensing (CS) strategy. A compression ratio as low as 18% is achieved. By utilizing SMD, we accomplish a boost of detection efficiency of up to 5 times compared with the traditional PPS mode. We believe that this SMD modality is certainly an important approach to prompt the development of NLOS imaging technologies.

11.
Opt Express ; 30(23): 41933-41942, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36366657

RESUMEN

Femtosecond laser micromachining has been considered as a powerful tool for fabricating versatile fiber devices and received increasing attention in recent years. Here, we report on a compact sensor by integrating a bridge-like waveguide inside a single-mode fiber to construct an in-line Mach-Zehnder interferometer and then inscribing a second-order Bragg grating in the core of the same fiber. The interference dip shows good performance in torsion sensing - the maximum torsion sensitivity of 1.5573 nm/(rad/m), the ability to identify the torsion direction, and low perturbation of axial strain. In order to compensate the cross impact of temperature, the fiber Bragg grating dip is employed as the second indicator and combined with the interference dip for discriminating temperature and directional torsion simultaneously. The proposed device also has the merits such as compact size, high thermal stability, and so on.

12.
Opt Lett ; 47(6): 1407-1410, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35290325

RESUMEN

The phase-shifted fiber Bragg grating (FBG) plays an important role in optical communication and sensing due to its ultra-narrow 3-dB bandwidth. Here, we demonstrate the fabrication and thermal property of a high-quality (Q)-factor phase-shifted helical fiber Bragg grating (PS-HFBG). A single-mode fiber is twisted and then inscribed point-by-point with a third-order uniform FBG by a single round of laser irradiation. The grating is curved slightly into a helical shape after the torsion is released, generating a phase shift in the grating. With annealing treatment, the PS-HFBG responds very stably to temperature with a linear sensitivity of 15.24 pm/°C within the range from 100 to 1100°C. Moreover, the PS-HFBG peak tends to narrower for higher temperature and the minimum 3-dB bandwidth is as low as 32 pm, indicating the highest Q-factor of 4.91 × 104. In addition, the PS-HFBG shows a low strain sensitivity (0.896 pm/µ ε). The proposed device is very promising to be applied as a high-precision and stable high-temperature sensor.

13.
Gynecol Oncol ; 167(2): 295-305, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36096974

RESUMEN

OBJECTIVES: Ovarian cancer is a fatal gynecological cancer due to the lack of effective screening strategies at early stage. This study explored the utility of DNA methylation profiling of blood samples for the detection of ovarian cancer. METHODS: Targeted bisulfite sequencing was performed on tissue (n = 152) and blood samples (n = 373) obtained from healthy women, women with benign ovarian tumors, or malignant epithelial ovarian tumors. Based on the tissue-derived differentially-methylated regions, a supervised machine learning algorithm was implemented and cross-validated using the blood-derived DNA methylation profiles of the training cohort (n = 178) to predict and classify each blood sample as malignant or non-malignant. The model was further evaluated using an independent test cohort (n = 184). RESULTS: Comparison of the DNA methylation profiles of normal/benign and malignant tumor samples identified 1272 differentially-methylated regions, with 49.4% hypermethylated regions and 50.6% hypomethylated regions. Five-fold cross-validation of the model using the training dataset yielded an area under the curve of 0.94. Using the test dataset, the model accurately predicted non-malignancy in 96.2% of healthy women (n = 53) and 93.5% of women with benign tumors (n = 46). For patients with malignant tumors, the model accurately predicted malignancy in 44.4% of stage I-II (n = 9), 86.4% of stage III (n = 59), 100.0% of stage IV tumors (n = 6), and 81.8% of tumors with unknown stage (n = 11). Overall, the model yielded a predictive accuracy of 89.5%. CONCLUSIONS: Our study demonstrates the potential clinical application of blood-based DNA methylation profiling for the detection of ovarian cancer.


Asunto(s)
Metilación de ADN , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética , Biomarcadores de Tumor/genética
14.
Nutr Cancer ; 74(7): 2632-2643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34894920

RESUMEN

The biological active form of vitamin D3, 1α,25-dehydroxyvitamin D3 [1α,25(OH)2D3], exerts pleiotropic effects including bone mineralization, anti-tumor, as well as immunomodulator. This study aimed to explore the potential impact of 1α,25(OH)2D3 on tumor-associated macrophages (TAMs) infiltration in ovarian cancer. Firstly, human monocytic THP-1 cells were differentiated into macrophages (M0) in the presence of phorbol 12-myristate 13-acetate (PMA). In Vivo, 1α,25(OH)2D3 not only reversed the polarization of M2 macrophages, but also decreased the proliferation and migration abilities of ovarian cancer cells induced by M2 macrophages supernatant. Furthermore, 1α,25(OH)2D3 dramatically decreased the secretion of TGF-ß1 and MMP-9 in M2 macrophages. However, no significant effect was observed in 1α,25(OH)2D3 treated M1 macrophages. In Vivo, vitamin D3 had an inhibitive effect of 1α,25(OH)2D3-treated M2 macrophages on tumorigenesis. In addition, we conducted the association of TAMs with the poor prognosis of patients with ovarian cancer by meta-analysis, which suggested the higher proportion of M2 macrophages was related to the poorer prognosis in ovarian cancer. Collectively, these results identified distinct roles of 1α,25(OH)2D3 treated M1 and M2 macrophages on cell proliferation and migration abilities in ovarian cancer.


Asunto(s)
Macrófagos , Neoplasias Ováricas , Diferenciación Celular , Proliferación Celular , Colecalciferol , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Acetato de Tetradecanoilforbol
15.
Sheng Li Xue Bao ; 74(3): 381-391, 2022 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-35770636

RESUMEN

Extracellular matrix (ECM) stiffness is closely related to the physiological and pathological states of breast tissue. The current study was aimed to investigate the effect of silk fibroin/collagen composite hydrogels with adjustable matrix stiffness on the growth and phenotype of normal breast epithelial cells. In this study, the enzymatic reaction of horseradish peroxidase (HRP) with hydrogen peroxide (H2O2) was used to change the degree of cross-linking of the silk fibroin solution. The rotational rheometer was used to characterize the composite hydrogel's biomechanical properties. Human normal mammary epithelial cell line MCF-10A were inoculated into composite hydrogels with various stiffness (19.10-4 932.36 Pa) to construct a three dimensional (3D) culture system of mammary epithelial cells. The CCK-8 assay was applied to detect the cell proliferation rate and active states in each group. Hematoxylin-Eosin (HE) staining and whole-mount magenta staining were used for histological evaluation of cell morphology and distribution. The results showed that with the increase of matrix stiffness, MCF-10A cells exhibited inhibited proliferation rate, decreased formation of acinus structures and increased branching structures. Meanwhile, with the increase of matrix stiffness, the polarity of MCF-10A cells was impeded. And the increase of matrix stiffness up-regulated the expression levels of mmp-2, mmp-3, and mmp-9 in MCF-10A cells. Among the genes related to epithelial-mesenchymal transition (EMT), the expression level of the epithelial marker gene E-cadherin was significantly down-regulated, while the interstitial cell marker gene Vimentin was up-regulated, and the expression levels of Snail, Wnt5b and Integrin ß1 in the Wnt pathway were up-regulated. These results suggest that the silk fibroin/collagen composite hydrogels with adjustable matrix stiffness regulates the proliferation and the phenotype of MCF-10A cells. The effects of increased matrix stiffness may be closely related to the changes of the polar structures and function of MCF-10A cells, as well as the occurrence of ECM-remodeling and EMT.


Asunto(s)
Fibroínas , Colágeno/metabolismo , Células Epiteliales/metabolismo , Fibroínas/química , Fibroínas/metabolismo , Fibroínas/farmacología , Humanos , Hidrogeles/química , Hidrogeles/metabolismo , Peróxido de Hidrógeno , Fenotipo
16.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 51(1): 95-101, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35576118

RESUMEN

Cellular senescence is a biological process associated with the degeneration of cell structure and function, which contribute to age-related diseases. Atherosclerosis is a chronic inflammatory disease that can cause a variety of cardiovascular disorders. In this article, we review the effects of cellular senescence on the development of atherosclerosis through diverse physiopathological changes, focusing on the alterations in senescent organelles and the increased senescence-associated secretory phenotype (SASP), and exploring the relevant therapeutic strategies for atherosclerosis by clearing senescent cells and reducing SASP, to provide new insights for the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Envejecimiento , Senescencia Celular , Enfermedad Crónica , Humanos , Fenotipo Secretor Asociado a la Senescencia
17.
BMC Cancer ; 21(1): 1134, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686154

RESUMEN

BACKGROUND: Signaling through VEGF/VEGFR induces cancer angiogenesis and affects immune cells. An increasing number of studies have recently focused on combining anti-VEGF/VEGFR agents and immune checkpoint inhibitors (ICIs) to treat cancer in preclinical and clinical settings. BD0801 is a humanized rabbit anti-VEGF monoclonal antibody in the clinical development stage. METHODS: In this study, the anti-cancer activities of BD0801 and its potential synergistic anti-tumor effects when combined with different immunotherapies were assessed by using in vitro assays and in vivo tumor models. Ex vivo studies were conducted to reveal the possible mechanisms of actions (MOA) underlying the tumor microenvironment modification. RESULTS: BD0801 showed more potent antitumor activity than bevacizumab, reflected by stronger blockade of VEGF/VEGFR binding and enhanced inhibitory effects on human umbilical vein endothelial cells (HUVECs). BD0801 exhibited dose-dependent tumor growth inhibitory activities in xenograft and murine syngeneic tumor models. Notably, combining BD0801 with either anti-PD-1 or anti-PD-L1 antibodies showed synergistic antitumor efficacy in both lung and colorectal cancer mouse models. Furthermore, the mechanistic studies suggested that the MOA of the antitumor synergy involves improved tumor vasculature normalization and enhanced T-cell mediated immunity, including increased tumor infiltration of CD8+ and CD4+ T cells and reduced double-positive CD8+PD-1+ T cells. CONCLUSIONS: These data provide a solid rationale for combining antiangiogenic agents with immunotherapy for cancer treatment and support further clinical development of BD0801 in combination with ICIs.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones , Microambiente Tumoral
18.
Am J Perinatol ; 38(11): 1181-1191, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32446263

RESUMEN

OBJECTIVE: The delivery mode is considered to be a significant influencing factor in the early gut microbiota composition, which is associated with the long-term health of the host. In this study, we tried to explore the effects of probiotics on the intestinal microbiota of C-section neonates. STUDY DESIGN: Twenty-six Chinese neonates were enrolled in this study. The neonates were divided into four groups: VD (natural delivery neonates, n = 3), CD (cesarean-born neonates, n = 9), CDL (cesarean-born neonates supplemented with probiotic at a lower dosage, n = 7), and CDH (cesarean-born neonates supplemented with probiotic at a higher dosage, n = 7). Fecal samples were collected on the 3rd, 7th, and 28th day since birth. The V3-V4 region of the 16S ribosomal ribonucleic acid gene was sequenced by next-generation sequencing technology. RESULTS: The α-diversity of the intestinal microbiota of cesarean delivery neonates was significantly lower than that of the naturally delivered neonates on the 28th day (p = 0.005). After supplementation with probiotics for 28 days, the α-diversity and the ß-diversity of the gut flora in the cesarean-born infants (CDL28 and CDH28) was similar to that in the vaginally delivery infants. Meanwhile, the abundances of Lactobacillus and Bifidobacterium were significantly increased since the 3rd day of probiotic supplementation. Besides, the sustained supplementation of probiotics to neonates would help improve the abundance of the operational taxonomic units in several different Clusters of Orthologous Groups of proteins. CONCLUSION: This study showed that probiotics supplementation to cesarean-born neonates since birth might impact the diversity and function of gut microbiota. KEY POINTS: · Cesarean-born neonates. · Probiotic supplementation impact gut flora. · Bifidobacterium and Lactobacillus.


Asunto(s)
Bifidobacterium , Cesárea , Suplementos Dietéticos , Microbioma Gastrointestinal , Lactobacillus , Probióticos/administración & dosificación , Heces/microbiología , Humanos , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , ARN Ribosómico 16S/genética , Factores de Tiempo
19.
Pestic Biochem Physiol ; 173: 104771, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33771249

RESUMEN

A series of novel 1-phenyl-5-amine-4-pyrazole thioether derivatives containing a 1,3,4-oxadiazole moiety was designed and synthesised. In vivo antiviral bioassay results showed that most of the target compounds exhibited excellent inactivation activity against Tobacco mosaic virus (TMV). The EC50 values of the inactivation activities for T2, T7, T9, T24, T25 and T27 were 15.7, 15.7, 15.5, 11.9, 12.5 and 16.5 µg/mL, respectively, which were remarkably superior over that of the commercialised antiviral agent ningnanmycin (40.3 µg/mL). Morphological study using AFM and TEM of TMV treated with T24 showed that T24 could significantly shorten the polymerization length of TMV particles and formed a distinct break on the rod-shaped TMV. Investigations for virus infection efficiency on tobacco leaves demonstrated that infectivity of virion had been reduced obviously upon T24 treatment. Subsequently, a strong interaction between T24 and TMV-CP (Kd = 3.8 µM, score 6.11) was observed through MST experiments. Molecular docking study further revealed that target compounds interact with amino acid residue Glu50 in TMV CP, causing disassembly of virion, shorting the length of the virion and reducing the infectivity of virion, and resulting in high inactivating activity of target compounds. This study provides a new insight for discovery of antiviral compounds through a new action mechanism with a new binding site.


Asunto(s)
Virus del Mosaico del Tabaco , Aminas , Antivirales/farmacología , Simulación del Acoplamiento Molecular , Pirazoles/farmacología , Relación Estructura-Actividad , Sulfuros
20.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2881-2888, 2021 Jun.
Artículo en Zh | MEDLINE | ID: mdl-34296589

RESUMEN

In this study, patients with prehypertensive liver-fire hyperactivity syndrome(LFHS) were selected as the research objects. The plasma samples of healthy volunteers and patients with prehypertensive LFHS were analyzed by non-targeted metabolomics based on UPLC-Q-Exactive MS. The differential biomarkers and metabolic pathways were screened out by multivariate statistics and metabolic pathway analysis, which revealed the characteristics of metabolic patterns of the syndrome. Thirty-three potential biomarkers such as androsterone and lysophosphatidylcholine and 16 related metabolic pathways such as steroid hormone metabolism and lipid metabolism were identified, and a partial least squares-discriminant analysis(PLS-DA) model of traditional Chinese medicine(TCM) syndromes was preliminarily constructed: Y =-0.070X_(13)-0.006X_8+ 0.040X_5-0.152X_1+0.131X_(10)+0.036X_(11)+0.043X_(23)+0.076X_(16)+0.132X_(20)+0.081X_(19)-0.101X_(31)+0.082X_(15)-0.038X_9+0.079X_(24). The predictive value of the model was 88.1%, and the explanatory power was 88.4%. In this study, the characteristic metabolic pattern of the prehypertensive LFHS was distinguished and revealed by metabolomics. The constructed PLS-DA model is expected to provide an objective basis for the identification of TCM syndromes in prehypertension, and inspiration for exploring the biological basis of TCM syndromes at small-molecular and overall levels.


Asunto(s)
Hígado , Metabolómica , Biomarcadores , Cromatografía Líquida de Alta Presión , Humanos , Síndrome , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA