Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 22(1): e3002423, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190355

RESUMEN

Power analysis currently dominates sample size determination for experiments, particularly in grant and ethics applications. Yet, this focus could paradoxically result in suboptimal study design because publication biases towards studies with the largest effects can lead to the overestimation of effect sizes. In this Essay, we propose a paradigm shift towards better study designs that focus less on statistical power. We also advocate for (pre)registration and obligatory reporting of all results (regardless of statistical significance), better facilitation of team science and multi-institutional collaboration that incorporates heterogenization, and the use of prospective and living meta-analyses to generate generalizable results. Such changes could make science more effective and, potentially, more equitable, helping to cultivate better collaborations.


Asunto(s)
Proyectos de Investigación , Estudios Prospectivos , Tamaño de la Muestra , Sesgo de Publicación
2.
PLoS Biol ; 22(4): e3002456, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603525

RESUMEN

A recent article claimed that researchers need not increase the overall sample size for a study that includes both sexes. This Formal Comment points out that that study assumed two sexes to have the same variance, and explains why this is a unrealistic assumption.


Asunto(s)
Proyectos de Investigación , Masculino , Femenino , Humanos , Tamaño de la Muestra
3.
Ecol Lett ; 27(2): e14387, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38382914

RESUMEN

The rapid urbanization of our world has led to a surge in artificial lighting at night (ALAN), with profound effects on wildlife. Previous research on wildlife's melatonin, a crucial mechanistic indicator and mediator, has yielded inconclusive evidence due to a lack of comparative analysis. We compiled and analysed an evidence base including 127 experiments with 437 observations across 31 wild vertebrates using phylogenetically controlled multilevel meta-analytic models. The evidence comes mainly from the effects of white light on melatonin suppression in birds and mammals. We show a 36% average decrease in melatonin secretion in response to ALAN across a diverse range of species. This effect was observed for central and peripheral melatonin, diurnal and nocturnal species, and captive and free-living populations. We also reveal intensity-, wavelength-, and timing-dependent patterns of ALAN effects. Exposure to ALAN led to a 23% rise in inter-individual variability in melatonin suppression, with important implications for natural selection in wild vertebrates, as some individuals may display higher tolerance to ALAN. The cross-species evidence has strong implications for conservation of wild populations that are subject to natural selection of ALAN. We recommend measures to mitigate harmful impacts of ALAN, such as using 'smart' lighting systems to tune the spectra to less harmful compositions.


Asunto(s)
Melatonina , Humanos , Animales , Contaminación Lumínica , Luz , Iluminación , Animales Salvajes , Mamíferos
4.
Langmuir ; 40(8): 4424-4433, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38368593

RESUMEN

To develop versatile photocatalysts for efficient degradation of distinct organic pollutants in water is a continuous pursuit in environment remediation. Herein, we directly oxidize Ti3C2 MXene with hydrogen peroxide to produce C-doped anatase TiO2 nanowires with aggregates maintaining a layered architecture of the MXene. The Ti3C2 MXene provides a titanium source for TiO2, a carbon source for in situ C-doping, and templates for nanowire aggregates. Under UV light illumination, the optimized Ti3C2/TiO2 exhibits a reaction rate constant 1.5 times that of the benchmark P25 TiO2 nanoparticles, toward photocatalytic degradations of trace phenol in water. The mechanism study suggests that photogenerated holes play key roles on the phenol degradation, either directly oxidizing phenol molecules or in an indirect way through oxidizing first the surface hydroxyl groups. The unreacted Ti3C2 MXene, although with trace amounts, is supposed to facilitate electron transfer, which inhibits charge recombination. The unique nanostructure of layered aggregates of nanowires, abundant surface oxygen vacancies arising from the carbon doping, and probably the Ti3C2/TiO2 heterojunction guarantee the high photocatalytic efficiency toward removals of organic pollutants in water. The photocatalyst also exhibits an activity superior to, or at least comparable to, the benchmark P25 TiO2 toward photodegradations for typical persistent organic pollutants of phenol, dye molecule of rhodamine B, antibiotic of tetracycline, pharmaceutical wastewater of ofloxacin, and pesticide of N,N-dimethylformamide, when evaluated in total organic carbon removal.

5.
BMC Biol ; 21(1): 71, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013585

RESUMEN

Collaborative efforts to directly replicate empirical studies in the medical and social sciences have revealed alarmingly low rates of replicability, a phenomenon dubbed the 'replication crisis'. Poor replicability has spurred cultural changes targeted at improving reliability in these disciplines. Given the absence of equivalent replication projects in ecology and evolutionary biology, two inter-related indicators offer the opportunity to retrospectively assess replicability: publication bias and statistical power. This registered report assesses the prevalence and severity of small-study (i.e., smaller studies reporting larger effect sizes) and decline effects (i.e., effect sizes decreasing over time) across ecology and evolutionary biology using 87 meta-analyses comprising 4,250 primary studies and 17,638 effect sizes. Further, we estimate how publication bias might distort the estimation of effect sizes, statistical power, and errors in magnitude (Type M or exaggeration ratio) and sign (Type S). We show strong evidence for the pervasiveness of both small-study and decline effects in ecology and evolution. There was widespread prevalence of publication bias that resulted in meta-analytic means being over-estimated by (at least) 0.12 standard deviations. The prevalence of publication bias distorted confidence in meta-analytic results, with 66% of initially statistically significant meta-analytic means becoming non-significant after correcting for publication bias. Ecological and evolutionary studies consistently had low statistical power (15%) with a 4-fold exaggeration of effects on average (Type M error rates = 4.4). Notably, publication bias reduced power from 23% to 15% and increased type M error rates from 2.7 to 4.4 because it creates a non-random sample of effect size evidence. The sign errors of effect sizes (Type S error) increased from 5% to 8% because of publication bias. Our research provides clear evidence that many published ecological and evolutionary findings are inflated. Our results highlight the importance of designing high-power empirical studies (e.g., via collaborative team science), promoting and encouraging replication studies, testing and correcting for publication bias in meta-analyses, and adopting open and transparent research practices, such as (pre)registration, data- and code-sharing, and transparent reporting.


Asunto(s)
Biología , Sesgo , Sesgo de Publicación , Reproducibilidad de los Resultados , Estudios Retrospectivos , Metaanálisis como Asunto
6.
J Sports Sci ; 41(17): 1617-1634, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38037792

RESUMEN

Meta-analysis has become commonplace within sport and exercise science for synthesising and summarising empirical studies. However, most research in the field focuses upon mean effects, particularly the effects of interventions to improve outcomes such as fitness or performance. It is thought that individual responses to interventions vary considerably. Hence, interest has increased in exploring precision or personalised exercise approaches. Not only is the mean often affected by interventions, but variation may also be impacted. Exploration of variation in studies such as randomised controlled trials (RCTs) can yield insight into interindividual heterogeneity in response to interventions and help determine generalisability of effects. Yet, larger samples sizes than those used for typical mean effects are required when probing variation. Thus, in a field with small samples such as sport and exercise science, exploration of variation through a meta-analytic framework is appealing. Despite the value of embracing and exploring variation alongside mean effects in sport and exercise science, it is rarely applied to research synthesis through meta-analysis. We introduce and evaluate different effect size calculations along with models for meta-analysis of variation using relatable examples from resistance training RCTs.


Asunto(s)
Entrenamiento de Fuerza , Deportes , Humanos , Ejercicio Físico
7.
Glob Chang Biol ; 28(3): 969-989, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34736291

RESUMEN

Field studies are essential to reliably quantify ecological responses to global change because they are exposed to realistic climate manipulations. Yet such studies are limited in replicates, resulting in less power and, therefore, potentially unreliable effect estimates. Furthermore, while manipulative field experiments are assumed to be more powerful than non-manipulative observations, it has rarely been scrutinized using extensive data. Here, using 3847 field experiments that were designed to estimate the effect of environmental stressors on ecosystems, we systematically quantified their statistical power and magnitude (Type M) and sign (Type S) errors. Our investigations focused upon the reliability of field experiments to assess the effect of stressors on both ecosystem's response magnitude and variability. When controlling for publication bias, single experiments were underpowered to detect response magnitude (median power: 18%-38% depending on effect sizes). Single experiments also had much lower power to detect response variability (6%-12% depending on effect sizes) than response magnitude. Such underpowered studies could exaggerate estimates of response magnitude by 2-3 times (Type M errors) and variability by 4-10 times. Type S errors were comparatively rare. These observations indicate that low power, coupled with publication bias, inflates the estimates of anthropogenic impacts. Importantly, we found that meta-analyses largely mitigated the issues of low power and exaggerated effect size estimates. Rather surprisingly, manipulative experiments and non-manipulative observations had very similar results in terms of their power, Type M and S errors. Therefore, the previous assumption about the superiority of manipulative experiments in terms of power is overstated. These results call for highly powered field studies to reliably inform theory building and policymaking, via more collaboration and team science, and large-scale ecosystem facilities. Future studies also require transparent reporting and open science practices to approach reproducible and reliable empirical work and evidence synthesis.


Asunto(s)
Efectos Antropogénicos , Ecosistema , Biología , Sesgo de Publicación , Reproducibilidad de los Resultados
8.
BMC Infect Dis ; 22(1): 707, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008772

RESUMEN

BACKGROUND: Tuberculosis (TB) had been the leading lethal infectious disease worldwide for a long time (2014-2019) until the COVID-19 global pandemic, and it is still one of the top 10 death causes worldwide. One important reason why there are so many TB patients and death cases in the world is because of the difficulties in precise diagnosis of TB using common detection methods, especially for some smear-negative pulmonary tuberculosis (SNPT) cases. The rapid development of metabolome and machine learning offers a great opportunity for precision diagnosis of TB. However, the metabolite biomarkers for the precision diagnosis of smear-positive and smear-negative pulmonary tuberculosis (SPPT/SNPT) remain to be uncovered. In this study, we combined metabolomics and clinical indicators with machine learning to screen out newly diagnostic biomarkers for the precise identification of SPPT and SNPT patients. METHODS: Untargeted plasma metabolomic profiling was performed for 27 SPPT patients, 37 SNPT patients and controls. The orthogonal partial least squares-discriminant analysis (OPLS-DA) was then conducted to screen differential metabolites among the three groups. Metabolite enriched pathways, random forest (RF), support vector machines (SVM) and multilayer perceptron neural network (MLP) were performed using Metaboanalyst 5.0, "caret" R package, "e1071" R package and "Tensorflow" Python package, respectively. RESULTS: Metabolomic analysis revealed significant enrichment of fatty acid and amino acid metabolites in the plasma of SPPT and SNPT patients, where SPPT samples showed a more serious dysfunction in fatty acid and amino acid metabolisms. Further RF analysis revealed four optimized diagnostic biomarker combinations including ten features (two lipid/lipid-like molecules and seven organic acids/derivatives, and one clinical indicator) for the identification of SPPT, SNPT patients and controls with high accuracy (83-93%), which were further verified by SVM and MLP. Among them, MLP displayed the best classification performance on simultaneously precise identification of the three groups (94.74%), suggesting the advantage of MLP over RF/SVM to some extent. CONCLUSIONS: Our findings reveal plasma metabolomic characteristics of SPPT and SNPT patients, provide some novel promising diagnostic markers for precision diagnosis of various types of TB, and show the potential of machine learning in screening out biomarkers from big data.


Asunto(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Aminoácidos , Biomarcadores , COVID-19/diagnóstico , Prueba de COVID-19 , Ácidos Grasos , Humanos , Lípidos , Aprendizaje Automático , Metaboloma , Tuberculosis Pulmonar/diagnóstico
9.
Entropy (Basel) ; 23(10)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34682075

RESUMEN

In this paper, a new variational Bayesian-based Kalman filter (KF) is presented to solve the filtering problem for a linear system with unknown time-varying measurement loss probability (UTVMLP) and non-stationary heavy-tailed measurement noise (NSHTMN). Firstly, the NSHTMN was modelled as a Gaussian-Student's t-mixture distribution via employing a Bernoulli random variable (BM). Secondly, by utilizing another Bernoulli random variable (BL), the form of the likelihood function consisting of two mixture distributions was converted from a weight sum to an exponential product and a new hierarchical Gaussian state-space model was therefore established. Finally, the system state vector, BM, BL, the intermediate random variables, the mixing probability, and the UTVMLP were jointly inferred by employing the variational Bayesian technique. Simulation results revealed that in the scenario of NSHTMN, the proposed filter had a better performance than current algorithms and further improved the estimation accuracy of UTVMLP.

10.
Sensors (Basel) ; 21(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396779

RESUMEN

Aiming at the problem that the performance of adaptive Kalman filter estimation will be affected when the statistical characteristics of the process and measurement of the noise matrices are inaccurate and time-varying in the linear Gaussian state-space model, an algorithm of multi-fading factor and an updated monitoring strategy adaptive Kalman filter-based variational Bayesian is proposed. Inverse Wishart distribution is selected as the measurement noise model and the system state vector and measurement noise covariance matrix are estimated with the variational Bayesian method. The process noise covariance matrix is estimated by the maximum a posteriori principle, and the updated monitoring strategy with adjustment factors is used to maintain the positive semi-definite of the updated matrix. The above optimal estimation results are introduced as time-varying parameters into the multiple fading factors to improve the estimation accuracy of the one-step state predicted covariance matrix. The application of the proposed algorithm in target tracking is simulated. The results show that compared with the current filters, the proposed filtering algorithm has better accuracy and convergence performance, and realizes the simultaneous estimation of inaccurate time-varying process and measurement noise covariance matrices.

11.
Nanotechnology ; 27(33): 332001, 2016 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-27388995

RESUMEN

Demand for a perfect molecular-level separation membrane with ultrafast permeation and a robust mechanical property for any kind of species to be blocked in water purification and desalination is urgent. In recent years, due to their intrinsic characteristics, such as a unique mono-atom thick structure, outstanding mechanical strength and excellent flexibility, as well as facile and large-scale production, graphene and its large family of two-dimensional (2D) materials are regarded as ideal membrane materials for ultrafast molecular separation. A perfect separation membrane should be as thin as possible to maximize its flux, mechanically robust and without failure even if under high loading pressure, and have a narrow nanochannel size distribution to guarantee its selectivity. The latest breakthrough in 2D material-based membranes will be reviewed both in theories and experiments, including their current state-of-the-art fabrication, structure design, simulation and applications. Special attention will be focused on the designs and strategies employed to control microstructures to enhance permeation and selectivity for liquid separation. In addition, critical views on the separation mechanism within two-dimensional material-based membranes will be provided based on a discussion of the effects of intrinsic defects during growth, predefined nanopores and nanochannels during subsequent fabrication processes, the interlayer spacing of stacking 2D material flakes and the surface charge or functional groups. Furthermore, we will summarize the significant progress of these 2D material-based membranes for liquid separation in nanofiltration/ultrafiltration and pervaporation. Lastly, we will recall issues requiring attention, and discuss existing questionable conclusions in some articles and emerging challenges. This review will serve as a valuable platform to provide a compact source of relevant and timely information about the development of 2D material-based membranes as well as fully explain up-to-date mechanisms and models of water transport and molecular separation behavior, which will arouse great interest among researchers entering or already working in the field of 2D material-based membranes.

12.
Small ; 11(7): 871-6, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25293504

RESUMEN

Bulk (Ga1-x Zn x )(N1-x O x ) as a photocatalyst has received increasing attention as a potential solution for the energy shortage challenge; however, its catalytic performance is highly limited by its bulk form. To improve the photochemical potential, the nanoscale form of this multiple-metal oxynitrides is desirable. In this work, a new type of (Ga1-x Zn x )(N1-x O x ) nanostructure is obtained. Its composition can tuned to the full range (0.18 < x < 0.95). The (Ga1-x Zn x )(N1-x O x ) nanostructure exhibits excellent photocatalytic activity for overall water splitting, and the highest quantum efficiency of (Ga1-x Zn x )(N1-x O x ) is as high as 17.3% under visible light irradiation. Using this new type of (Ga1-x Zn x )(N1-x O x ) nanostructure, the narrowing of the bandgap for (Ga1-x Zn x )(N1-x O x ) is not only due to an increase in the valence band maximum, but it is also related to a decrease in the conduction band minimum.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38982618

RESUMEN

Sexual selection has been a popular subject within evolutionary biology because of its central role in explaining odd and counterintuitive traits observed in nature. Consequently, the literature associated with this field of study became vast. Meta-analytical studies attempting to draw inferences from this literature have now accumulated, varying in scope and quality, thus calling for a synthesis of these syntheses. We conducted a systematic literature search to create a systematic map with a report appraisal of meta-analyses on topics associated with sexual selection, aiming to identify the conceptual and methodological gaps in this secondary literature. We also conducted bibliometric analyses to explore whether these gaps are associated with the gender and origin of the authors of these meta-analyses. We included 152 meta-analytical studies in our systematic map. We found that most meta-analyses focused on males and on certain animal groups (e.g. birds), indicating severe sex and taxonomic biases. The topics in these studies varied greatly, from proximate (e.g. relationship of ornaments with other traits) to ultimate questions (e.g. formal estimates of sexual selection strength), although the former were more common. We also observed several common methodological issues in these studies, such as lack of detailed information regarding searches, screening, and analyses, which ultimately impairs the reliability of many of these meta-analyses. In addition, most of the meta-analyses' authors were men affiliated to institutions from developed countries, pointing to both gender and geographical authorship biases. Most importantly, we found that certain authorship aspects were associated with conceptual and methodological issues in meta-analytical studies. Many of our findings might simply reflect patterns in the current state of the primary literature and academia, suggesting that our study can serve as an indicator of issues within the field of sexual selection at large. Based on our findings, we provide both conceptual and analytical recommendations to improve future studies in the field of sexual selection.

14.
Chemosphere ; 361: 142346, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38759804

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in consumer products. PFAS can accumulate in animal tissues, resulting in biomagnification and adverse effects on wildlife, such as reproductive impairment. In bird species, PFAS are transferred from mothers to eggs along with essential nutrients and may affect embryo development. However, the extent of maternal PFAS transfer across different species and compounds remains poorly understood. Here, we conducted a systematic review and meta-analysis to quantify maternal PFAS transfer in wild birds and investigate potential sources of variation. We tested the moderating effects of compounds' physicochemical properties and biological traits of studied birds. The dataset included 505 measurements of PFAS concentration and 371 effect sizes derived from 13 studies on 16 bird species and 25 compounds. Overall, across all studies and species, we found a 41% higher concentration of PFAS in offspring than in mothers. Specifically, contaminants were concentrated in the yolk, longer and heavier compounds showed preferential transfer, larger clutch size was associated with decreased PFAS transfer and a higher transfer rate was shown in species with piscivorous and opportunistic/diverse diets. A validation assessment showed good robustness of the overall meta-analytic result. Given the crucial role of birds in maintaining ecological balance, this research article has relevant implications for modelling the impacts of PFAS on wildlife, ecosystems, and human health.


Asunto(s)
Aves , Contaminantes Ambientales , Fluorocarburos , Animales , Aves/metabolismo , Fluorocarburos/análisis , Femenino , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo , Animales Salvajes , Exposición Materna/estadística & datos numéricos , Monitoreo del Ambiente
15.
Environ Pollut ; 347: 123630, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38423273

RESUMEN

Pesticides are indispensable in agriculture and have become ubiquitous in aquatic environments. Pesticides in natural environments can cause many negative impacts on aquatic species, ranging from mortality to sub-lethal physiological and behavioural changes. The complex sub-lethal impacts of pesticides are routinely tested on model species, with zebrafish (Danio rerio) being regularly used as a behavioural model. Although behavioural ecotoxicology research using zebrafish is increasing rapidly, we lack quantitative evidence to support which pesticides have been tested and how study designs are carried out. This shortcoming not only limits the deliberate planning for future primary studies to fill the knowledge gaps but also hinders evidence synthesis. To provide quantitative evidence of what pesticides are currently studied and what study designs are used, we combined a systematic evidence map approach and bibliometric analysis. This novel method has been coined research weaving and allows us to elicit gaps and clusters in our evidence base, whilst showing connections between authors and institutions. The methodology can be summarised in five primary steps: literature searching, screening, extraction, data analysis and bibliometric analysis. We identified four areas where research on the sub-lethal effects of pesticide exposure on zebrafish is lacking. First, some widely used pesticides, such as neonicotinoids, are understudied. Second, most studies do not report important elements of the study design, namely the sex and the life-stage of the zebrafish. Third, some behaviours, such as impacts of pesticide exposure on zebrafish cognition, are underexplored. And last, we revealed through the bibliometric analysis that most of the research is conducted in developed countries and there is limited cross country co-authorships. Upon identifying these gaps, we offer solutions for each limitation, emphasizing the importance of diverse global research output and cross-country co-authorships. Our systematic evidence map and bibliometric analysis provide valuable insights for helping to guide future research, which can be used to help support evidence-based policy decisions.


Asunto(s)
Plaguicidas , Animales , Plaguicidas/toxicidad , Pez Cebra/fisiología , Agricultura , Ecotoxicología , Bibliometría
16.
ACS Appl Mater Interfaces ; 16(15): 18991-19002, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588112

RESUMEN

Transition metal sulfides (TMSs) are considered as promising anode materials for sodium-ion batteries (SIBs) due to their high theoretical capacities. However, the relatively low electrical conductivity, large volume variation, and easy aggregation/pulverization of active materials seriously hinder their practical application. Herein, okra-like NiS2/FeS2 particles encapsulated in multichannel N-doped carbon nanofibers (NiS2/FeS2@MCNFs) are fabricated by a coprecipitation, electrospinning, and carbonization/sulfurization strategy. The combined advantages arising from the hollow multichannel structure in carbon skeleton and heterogeneous NiS2/FeS2 particles with rich interfaces can provide facile ion/electron transfer paths, ensure boosted reaction kinetics, and help maintain the structural integrity, thereby resulting in a high reversible capacity (457 mA h g-1 at 1 A g-1), excellent rate performance (350 mA h g-1 at 5 A g-1), and outstanding long-term cycling stability (93.5% retention after 1100 cycles). This work provides a facile and efficient synthetic strategy to develop TMS-based heterostructured anode materials with high-rate and stable sodium storage properties.

17.
Adv Mater ; 36(24): e2400245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38377331

RESUMEN

The construction of high-quality carbon-based energy materials through biotechnology has always been an eager goal of the scientific community. Herein, juice vesicles bioreactors (JVBs) bio-technology based on hesperidium (e.g., pomelo, waxberry, oranges) is first reported for preparation of carbon-based composites with controllable components, adjustable morphologies, and sizes. JVBs serve as miniature reaction vessels that enable sophisticated confined chemical reactions to take place, ultimately resulting in the formations of complex carbon composites. The newly developed approach is highly versatile and can be compatible with a wide range of materials including metals, alloys, and metal compounds. The growth and self-assembly mechanisms of carbon composites via JVBs are explained. For illustration, NiCo alloy nanoparticles are successfully in situ implanted into pomelo vesicles crosslinked carbon (PCC) by JVBs, and their applications as sulfur/carbon cathodes for lithium-sulfur batteries are explored. The well-designed PCC/NiCo-S electrode exhibits superior high-rate properties and enhanced long-term stability. Synergistic reinforcement mechanisms on transportation of ions/electrons of interface reactions and catalytic conversion of lithium polysulfides arising from metal alloy and carbon architecture are proposed with the aid of DFT calculations. The research provides a novel biosynthetic route to rational design and fabrication of carbon composites for advanced energy storage.

18.
Neurosci Biobehav Rev ; 146: 105016, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566804

RESUMEN

Meta-analytic techniques have been widely used to synthesize data from animal models of human diseases and conditions, but these analyses often face two statistical challenges due to complex nature of animal data (e.g., multiple effect sizes and multiple species): statistical dependency and confounding heterogeneity. These challenges can lead to unreliable and less informative evidence, which hinders the translation of findings from animal to human studies. We present a literature survey of meta-analysis using animal models (animal meta-analysis), showing that these issues are not adequately addressed in current practice. To address these challenges, we propose a meta-analytic framework based on multilevel (linear mixed-effects) models. Through conceptualization, formulations, and worked examples, we illustrate how this framework can appropriately address these issues while allowing for testing new questions. Additionally, we introduce other advanced techniques such as multivariate models, robust variance estimation, and meta-analysis of emergent effect sizes, which can deliver robust inferences and novel biological insights. We also provide a tutorial with annotated R code to demonstrate the implementation of these techniques.


Asunto(s)
Modelos Animales , Animales , Humanos , Estadística como Asunto
19.
Polymers (Basel) ; 15(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36987276

RESUMEN

Obvious volume change and the dissolution of polysulfide as well as sluggish kinetics are serious issues for the development of high performance metal sulfide anodes for sodium-ion batteries (SIBs), which usually result in fast capacity fading during continuous sodiation and desodiation processes. In this work, by utilizing a Prussian blue analogue as functional precursors, small Fe-doped CoS2 nanoparticles spatially confined in N-doped carbon spheres with rich porosity were synthesized through facile successive precipitation, carbonization, and sulfurization processes, leading to the formation of bayberry-like Fe-doped CoS2/N-doped carbon spheres (Fe-CoS2/NC). By introducing a suitable amount of FeCl3 in the starting materials, the optimal Fe-CoS2/NC hybrid spheres with the designed composition and pore structure exhibited superior cycling stability (621 mA h g-1 after 400 cycles at 1 A g-1) and improved the rate capability (493 mA h g-1 at 5 A g-1). This work provides a new avenue for the rational design and synthesis of high performance metal sulfide-based anode materials toward SIBs.

20.
ACS Appl Mater Interfaces ; 15(25): 30249-30261, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37307432

RESUMEN

Iron sulfides are widely explored as anodes of sodium-ion batteries (SIBs) owing to high theoretical capacities and low cost, but their practical application is still impeded by poor rate capability and fast capacity decay. Herein, for the first time, we construct highly dispersed Fe7S8 nanoparticles anchored on a porous N-doped carbon nanosheet (CN) skeleton (denoted as Fe7S8/NC) with high conductivity and numerous active sites via facile ion adsorption and thermal evaporation combined procedures coupled with a gas sulfurization treatment. Nanoscale design coupled with a conductive carbon skeleton can simultaneously mitigate the above obstacles to obtain enhanced structural stability and faster electrode reaction kinetics. With the aid of density functional theory (DFT) calculations, the synergistic interaction between CNs and Fe7S8 can not only ensure enhanced Na+ adsorption ability but also promote the charge transfer kinetics of the Fe7S8/NC electrode. Accordingly, the designed Fe7S8/NC electrode exhibits remarkable electrochemical performance with superior high-rate capability (451.4 mAh g-1 at 6 A g-1) and excellent long-term cycling stability (508.5 mAh g-1 over 1000 cycles at 4 A g-1) due to effectively alleviated volumetric variation, accelerated charge transfer kinetics, and strengthened structural integrity. Our work provides a feasible and effective design strategy toward the low-cost and scalable production of high-performance metal sulfide anode materials for SIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA