Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 49(2): 325-333, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403308

RESUMEN

Neutrophil extracellular traps(NETs) are fibrous networks formed by neutrophils after a procedure called NETosis, with the function of capturing and killing pathogens. NETs are widely involved in the pathological processes of major diseases such as immune system diseases, respiratory diseases, metabolic diseases, cancers, and reperfusion injury. Therefore, regulating NETs has become one of the important ways to prevent and treat the above diseases. As an excellent traditional culture in China, traditional Chinese medicine has made outstanding contributions to the treatment of diseases. In recent years, studies have discovered that a variety of active components in traditional Chinese medicines, Chinese medicine compound prescriptions, and single traditional Chinese medicines can alleviate the symptoms by regulating NETs in the pathological process of major diseases. This article reviews the research progress in the regulation of NETs by the active components of traditional Chinese medicines, Chinese medicine compound prescriptions, and single traditional Chinese medicines in the last five years, aiming to serve as a reference for related research.


Asunto(s)
Trampas Extracelulares , Trampas Extracelulares/metabolismo , Medicina Tradicional China , Neutrófilos , China
2.
Biomed Res Int ; 2019: 7159592, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31355277

RESUMEN

Cardiac remodeling is a self-regulatory response of the myocardium and vasculature under the stressful condition. Cardiomyocytes (CMs), vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and cardiac fibroblasts (CFs) are all involved in this process, characterized by change of morphological structures and mechanical/chemical activities as well as metabolic patterns. Despite current development of consciousness, the control of cardiac remodeling remains unsatisfactory, and to further explore the underlying mechanism and seek the optimal therapeutic targets is still the urgent need in clinical practice. It is now emerging that long noncoding RNAs (lncRNAs) play key regulatory roles in these adverse responses: lncRNA TUG1, AK098656, TRPV1, GAS5, Giver, and Lnc-Ang362 have been indicated in hypertension-related vascular remodeling, H19, TUG1, UCA1, MEG3, APPAT, and lincRNA-p21 in atherosclerosis (AS), and HIF1A-AS1 and Lnc-HLTF-5 in aortic aneurysm (AA). In addition, Neat1, AK139328, APF, CAIF, AK088388, CARL, MALAT1, HOTAIR, XIST, and NRF are involved in postischemia myocardial remodeling, while Mhrt, Chast, CHRF, ROR, H19, Plscr4, and MIAT are involved in myocardial hypertrophy, and MALAT1, wisper, MEG3, and H19 are involved in extracellular matrix (ECM) reconstitution. Signaling to specific miRNAs by acting as endogenous sponge (ceRNA) was the main form that regulates the target gene expression during cardiac remodeling. This review will underline the updates of lncRNAs and lncRNA-miRNA interactions in maladaptive remodeling and also cast light on their potential roles as therapeutic targets, hoping to provide supportive background for following research.


Asunto(s)
Matriz Extracelular/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/metabolismo , Transducción de Señal , Remodelación Ventricular , Animales , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/patología , Humanos , Miocardio/patología , Miocitos Cardíacos/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA